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Geometric invariants and HNN-extensions

Burkhardt Renz

1. Introduction

For every H N N-extension
(*) H = (B,t;t”'Bit = By)

over a base group B and with stable letter ¢ one has the associated homomor-
phism x : H — Z given by x(t) = 1 and x(B) = 0. Every homomorphism
x of a group G onto Z can, of course, be regarded as the associated homo-
morphism of some H N N-decomposition of G; but in many circumstances
G has, in fact, an H N N-decomposition over a finitely generated base group
with associated homomorphism x. This is, for instance, the case when G is
finitely presented, see [2].

We call the H N N-extension (%) ascending if the first associated sub-
group B; coincides with the base group B, so that the kernel N of the
associated homomorphism yx is the union of the ascending chain

...Ct7'BtCBCtBt ! Ct!Bt"?C...

Correspondingly () is descending if B, = B. It is interesting to know
which homomorphisms x : G —+ Z are associated to an ascending HN N-
decomposition over a finitely generated base group. This question is an-
swered in [1] in terms of the ‘geometric invariant’ ¥ of G. The Bieri-
Neumann-Strebel invariant ¥ of a finitely generated group G is a certain
subset of the ‘character sphere’ S(G), by which we mean the set of all
equivalence classes [x] = {Ax | 0 < A € R} of non-zero homomorphisms
X : G — R34 under multiplication by positive real numbers. We should
mention that ¥ captures not only the information about ascending HN N-
decompositions over finitely generated base groups but also characterizes
the finitely generated normal subgroups of G with Abelian quotient.
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In this paper, I go one step further by investigating the question as to
which homomorphisms x : G — Z are associated to an ascending HN N-
extension over a finitely presented base group. The answer is given in terms
of a new geometric invariant *$2. This is part of a more general concept in
my Thesis [6] where I define a chain of higher geometric invariants

S(G) 2 o 3 g s o s S

generalizing *%? and the Bieri-Neumann-Strebel invariant £ = —*S!. The
higher geometric invariant *£* allows to decide as to whether a given normal
subgroup N of G with G/N Abelian is of type Fy, i.e. has an Eilenberg-
MacLane complex K(G,1) with finite k-skeleton.

The paper is organized as follows. In §2 we extend homomorphisms
x : G — R to valuations v, on the Cayley complex C = C(X;R) of a
presentation (X; R) of G. In §3 we define the geometric invariants *$! and
*22. The combinatorial characterization of *£! in terms of certain loops in
the Cayley graph of G shows that, up to a sign, *£! coincides with the Bieri-
Neumann-Strebel invariant. Generalizing this description to dimension 2 we
get a combinatorial characterization of *£2 in terms of simple diagrams over
(X; R). We use these descriptions to study ascending H N N-extensions with
finitely generated base group in §4. We give the proof of the result in [1]
in our geometric setting. Then we give necessary and sufficient conditions
(in terms of *%2) for finite presentation of the base group B in an ascending
H N N-extension G = (B,t; t" 1Bt < B).

Acknowledgement. I would like to thank Robert Bieri for the many
fruitful and stimulating discussions during the process of finding the results
of my Thesis, which contains the theorem presented in this paper. I would
also like to express my thanks to the Hermann-Willkomm-Stiftung, Frank-
furt for its financial support of my journey to Singapore.

2. Characters and valuations on the Cayley complex

2.1 Let G be a finitely generated group, and d the Z-rank of the abelianiza-
tion G% of G. A character of G is a non-zero homomorphism x : G — R
into the additive group of real numbers. Two characters are equivalent if
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they coincide up to multiplication by a positive real number. Hom(G,R) =
Hom(G®,R) is a d-dimensional real vector space which can be identified
with R4. The equivalence class [x] of a character thus is the ray from 0
through x in Hom(G,R) = R?. The character sphere S(G) of G is defined
to be S(G) = {[x] | x € Hom(G,R) \ {0}}. S(G) is homeomorphic to the
unit sphere S9-1.

A character x with infinite cyclic image is called a discrete character.
The subset of the rational points of S(G) ¢ S4~! consists of the classes of
discrete characters and is dense in S(G). For a rational point [x] € S(G)
we always find a representative x with x : G — Z C R.

A character x allows us to interpret the ordering of R in the preimage
of x: attached to each [x] € S(G), we consider the submonoid Gy = {g |
x(g9) > 0} of G. Gy does not depend upon the choice of the representative

X € [x]-

2.2 Let (X; R) be a presentation of G where R is a set of cyclically reduced
words in the free group F(X) with basis X. We do not assume that X
embeds in G, but will not distinguish notationally between words in X*1,
i.e. elements of F(X), and their images in G.

The Cayley graph T' = I'(X) and the Cayley complez C = C(X; R) of
G are defined as follows (see (5], III.4):

The set V of vertices of C is the set G of elements of the group. The set
E of edges of C is G x X*1. An edge (g, z), by definition, links the vertex
g to gz. [Note that gz here is regarded as an element of G.| The inverse
oriented edge is (gz, :c'l). We have a labelling function ¢ : E — X*!
defined by ¢((g9,z)) = z. ¢ extends multiplicatively to edge paths in C: if
p = €163 ...¢6, is an edge path then o(p) = p(e;1)p(ez) - p(en) is a word
in F(X). ¢(p) is reduced if and only if p is a reduced path. p is a loop
if and only if ¢(p) is in the normal closure of R in F(X). The set F of
faces of C(X; R) is G x R%!. A face (g,r) has as boundary the loop p, at g
with label ¢(p,) = r. The inverse of (g,r) is (g,7!). The 1-skeleton of the
Cayley complex C is called the Cayley graph I'(X) of G with respect to the
generators X.

2.3 Let x be a character of G and C the Cayley complex of G in the
presentation G = (X; R). We extend x to a valuation v, on C:
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If g €V is a vertex of C, we put vy(g) = x(g). For an edge e = (g, z)
we define vy (€) = min{vy(g),vx(9z)}. If p = €1ez---€, is an edge path
beginning at g then the x-track of p is the sequence

(vx(9), vx(9p(e1)), vx (9p(e1)p(e2)), - - ., vx (90 (e1)(ez) - - - (en)))

and vy (p) is defined to be the minimum of the x-track of p. Accordingly we
denote by v, (w) the minimum of the x-track of a word w in X*!. If (g,r)
is a face of C then vy ((g,r)) is the minimum of the x-track of the boundary
loop of (g,r).

The automorphisms of the Cayley complex C, i.e. automorphisms of
the combinatorial 2-complex C which preserve labels, are exactly those in-
duced by left multiplication of G ([5], IlI.4.1.). G is the group of deck
transformations of C.

A valuation v, on C extending a character x has the following property:

(*) wvx(ge) =x(g9) +vy(c) forceVorce Eorce F and all g € G.

Remark. The notion of a valuation on the combinatorial Cayley com-
plex C(X; R) is the special case of a more general notation of valuations v,
extending a character x of G. Recall that a G-complex is a CW-complex
C together with an operation of G by homeomorphisms which permute the
cells. If furthermore the stabilizer of each cell is trivial then C is a free
G-complez.

Let C be a free G-complex and x € Hom(G;R) \ {0}. A continuous
function v, : C — R is called a valuation on C associated with x if

(1) vy (gc) = x(9) + vi(c) forall ceC,g€@G
(2) v4(C°) C x(G) [C° is the O-skeleton of C.]
(3) Let o C C be a cell with boundary do then

min vy (90) < vy(c) < maz vy (d0)

forall ceo.

If C is the geometric realization of the Cayley complex C(X;R) of a
group G then C is the universal cover of the 2-dimensional CW-complex
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which is usually called the geometric realization of the presentation (X; R)
of G (see e.g. [4], p.44). A combinatorial valuation on C(X;R) yields by
piecewise linear extension a valuation on C.

2.4 A full subcomplex C' of the Cayley complex C = C(X; R) of a group
G is a subcomplex with the following property: If e is an edge of C or f a
face of C and all vertices g of e or of f are in C' then e or fisin C'. A full
subcomplex C' of C is determined by the set of vertices of C'.

Let vy be a valuation on C associated with the character x. The valu-
ation subcomplez C, of C is defined to be the full subcomplex of C spanned
by the submonoid Gy, i.e. by {g | vx(g) > 0} C V. We put C, ,(X € R) for
the full subcomplex of C' generated by {g | vy(9) > —A} and C_, for the
full subcomplex of C spanned by the subset {g | vy (g) < 0} of the vertices V
of C. If T = I'(X) is the Cayley graph of G with respect to the generating
set X then T, is the subgraph spanned by G,. T, contains those edges
(9, z) of T for which vy (g) > 0 and vy(gz) > 0. Note that C,, = C, , and

r

vy = P"x' if x and x' are equivalent characters.

3. The geometric invariants *2! and *%?

3.1 We keep the notation and conventions of section 2. Recall that the edge
path group of a combinatorial 2-complex is isomorphic with the fundamental
group of its geometric realization.

Definition. Let G be a finitely generated group, X a finite generating
set of G, and [x] € S(G). We put

[x] € *E! :¢the valuation subgraph Ty, of the Cayley graph I'(X)

of G is connected.

Lemma 1. Let G be a finitely generated group and [x] € *T1. Then
the valuation subgraph T, (Y) of [(Y') is connected for any finite set Y of
generators of G.

Proof. Let X be a finite set of generators of G such that I',(X) is
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connected, and let Y be another finite set of generators. Each z; € X*! is
expressible as a word w; in the generators Y*!. We fix such expressicns and
put A = min {vy(w;)}. Since T'y (X) is connected, for each vertex h of T, (Y)
there is an edge path p in I'(Y)) connecting 1 and h such that v, (p) > .
Furthermore, given two vertices hy, hy of T, (Y') with v, (h;) > pfori =1,2
and some p > 0, we can find an edge path p' in I',(Y) which connects h,
and h; and fulfills vy (p') > p + A. This follows from the fact that G acts
on I'(Y') by left multiplication together with property () of 2.3. Let g be
a vertex of I'y(Y). Choose t € Y*! with x(t) > 0, and k € N such that
x(t¥) > |A|. Then there is an edge path p; connecting t* and gt* such that
vx(p2) > 0. Let p; be the edge path on I',(Y) corresponding to the word
t* and starting at 1, and ps the path with ©(p3) = t* starting at gt*.
Then p1p2ps is an edge path in I'y (Y)) which connects 1 and g, thus T',(Y)
is connected.

3.2 We give a combinatorial criterion for x| € *Z!.

Theorem 1 (Criterion for *£'). Let G be a finitely generated group, X
a finite set of generators, and [x] € S(G).

Then [x] € *E' if, and only if, there is a t € X*! with x(t) > 0 such
that for every z € X+ \ {t,t=1} the conjugate t™'2 € G can be ezpressed
as a word w in X*1 with vy (t712t) < vy (w).

Proof. Let I' = I'(X) be the Cayley graph of G and T, the valuation
subgraph of T'.

If [x] € *S! then T, is connected. Take a t € X*! with x(t) > 0.
Consider the path t~!zt in T beginning at 1. If x(z) > 0 then the endpoint
of t~ 1zt is T, thus there is also a path w in T, beginning at 1 and ending
at t~1zt, and therefore vy (t~12t) < vy (w). If x(z) < O then there exists an
integer [ > 0 such that the endpoint of the path t~1zt' beginning at 1 lies
in T'y. Let w' be a word in X*! with t~'zt' = w' (in G) and vy (w') > 0.
Thus ¢t !zt = w't~ =1 is a desired expression.

Now we consider a vertex g in I, together with a path p connecting 1

and g in T'. If there is a vertex h in p with v, (h) < O then we proceed as

Ty
follows: Choose h such that v, (h) = vy(p), and consider the part e—e—e

h
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ofp. If z # ¢, t7! and y # t, t~! we have expressions 7y = w, and
p )

thy = wy, with vy (t712t) < vy(w;) and vy (t7'yt) < vy(w,). Thus we
can pass to a path p' by using the paths labelled by w, and w, instead
of z and y. If z = t~! or y = t we proceed in the same manner for
y or z, respectively, and reduce the path p' afterwards. In any case the
number of vertices ¢ with vy (c) = vy(p) decreases. Since X is a finite set,
{vy(wz) — vy (t"1zt) | z € X1\ {t,t"'}} has a minimum > 0, and so ite-
ration of the procedure yields eventually a path in Iy connecting 1 and g.
Comparing Theorem 1 with [1], Proposition 2.1, it is easy to see that
*$1 = —%. [ - is the antipodal map of S(G).] Hence *E! is an open subset
of S(G). This follows easily from Theorem 1 too. Note that Bieri, Neumann,
Strebel consider G as acting by the right on G', whereas we use left action
according to the occidental custom to read edge paths in I' from left to right.

3.3 A diagram M over the presentation (X; R) of G is a finite planar config-
uration of vertices, edges and faces fulfilling the following conditions: The
oriented edges of M are labelled by the set X*1. If the edge e has label z
then its inverse is labelled by z=!. The boundary path of each face of M
corresponds under the labelling to a cyclic permutation of a defining relation

r € R or its inverse r~ 1.

A connected and simply connected diagram M with boundary M
a reduced loop p based at 1 describes the equivalence in the edge path
group of C(X; R) of p to the trivial path (see [5], IIl.4 and V.1). We call
a connected and simply connected diagram with reduced boundary loop a
simple diagram.

If a diagram M has two faces which are neighboured as shown in the
following illustration

Illustration 1. Lyndon reduction
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then we can reduce M by shrinking the interior of the loop labelled ww™1.

We refer to this kind of reduction of diagram as Lyndon reduction.

Unlike the usual definition of diagrams we do allow trivial faces labelled
by tt~1t~ 't for a distinguished generator t of G. This deviation simplifies
the drawing of diagrams that contain paths coming from conjugation of a
word by t.

Each closed path in a simple diagram M is labelled by a relator of G,
i.e. a consequence of the defining relations. Thus if we choose a base point
of M then every vertex of M can uniquely be labelled by an element of
G. For a given valuation v, of the Cayley complex C(X;R) of G we get
after the choice of a base point in M a valuated simple diagram. We denote
vy (M) = min{vy(g)|g is vertex in M}.

Obviously, we obtain:

Theorem 2. Let G = (X; R) be a finitely generated group, and C the
Cayley complez together with a valuation v, associated with the character
X. Then the valuation subcomplez C, is 1-connected if, and only if, C, 1s
connected and for each reduced loop p at 1 € C with vy(p) > O there is a
simple diagram M with OM = p such that vy (g) > O for every vertez g of
M.

3.4. Now we pass to the geometric invariant *%2.

Definition. Let G be a finitely generated group and [x] € S(G). Then
we define

[x] € *E? :¢ there is a finite presentation (X;R) of G such that
the valuation subcomplex C,, of the Cayley complex
C(X;R) of G is 1-connected.

From the definitions we see that S(G) 2 *Z! D *E? for a finitely gener-
ated group.

Remark. We should mention that there is a generalization: A char-
acter [x] € S(G) is, by definition, in *Z* (k > 1) if there is an Eilenberg-
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Maclane complex K = K (G, 1) with finite k-skeleton such that the valuation
subcomplex C, of the universal cover C of K is (k — 1)-connected. [v is a
valuation extending x on the free G-complex C.] [6]

If we change the finite presentation of G, then the valuation subcomplex
of the Cayley complex of G will not, in general, remain 1-connected. But
a weaker property of the valuation subcomplex is independent of the choice
of the finite presentation of G.

Definition. Let C be the Cayley complex of G with respect to the
finite presentation G = (X; R) and let vy be a valuation on C. Suppose
C, is connected. We say that the valuation subcomplex C, is essentially
1-connected if there is a real number A > 0 such that the homomorphism
71(Cy) — 71(Cy ») induced by the inclusion C, — C,, ) is trivial.

Analogously to Theorem 2, C, is essentially 1-connected if, and only
if, C, is connected and there exists a A > 0 such that for every reduced
loop based at 1 in C, we can find a simple diagram M with M = p and
v(g) > — for every vertex g of M.

Lemma 2. Suppose G is a finitely presented group and [x| € el
(Y'; S) is a finite presentation of G, then Cy (Y, S) is essentially 1-connected.
[v stands for a valuation on C(Y,S) associated with [x].]

Proof. Let (X;R) be a finite presentation of G such that C,(X; R)
is 1-connected. We can pass from (X;R) to the presentation (Y;S) of G
by a finite sequence of Tietze transformations. Hence it is sufficient to
study the effect of Tietze transformations to the corresponding valuation
subcomplexes and to prove that essential 1-connectivity is preserved. Let’s
fix the following notation:

Ty : (X1; Ry) — (Xa; Ry)
where X; = X; and R; = Ry U {r} for a consequence r of R;.
T, : (X1; R1) — (Xa; Rp)

where X, = X; U{y} and R; = R; U{r} for a letter y ¢ X; and a relation
r =y~ lw expressing y as a word w in Xi“.
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Tr 1 and Ty 1 are the transformations in the opposite direction. In both
cases, we obviously can view C(Xy, R;) as a subcomplex of C(X2; R).

(1) If one performs T on (X 1; Ry) then C, (X2; R;) is essentially 1-connected,
provided that this was the case for C, (X1, R1).

(2) Now we consider Ty 1 Suppose C, (X3, Ry) is essentially 1-connected,
i.e. for every reduced loop p at 1 in Cy(Xj, R;) there is a simple diagram
M over (Xp; R;) with @M = p and v(g) > —X for some A > 0 and for all
vertices g of M. Since r is a consequence of R; there is a simple diagram
M, over (X;; Ry) with M, = r. Let p = maz{|vy(g) — vx(h)| | g,h vertices
of M,}. We replace each face of M corresponding to r by M, and obtain a
simple diagram M' with dM' = p and v(g) > —A — p for every g in M. M
is now a diagram in C(Xi, R;), hence C, (X1, R,) is essentially 1-connected.
(3) Suppose C, (X1, R,) is essentially 1-connected. Now we perform T3 on
(X1; Ry). Put p = maz{|vy(g) — vx(h)| | g,k vertices of r}. Each reduced
loop based at 1 in Cy(X3,R;) is in Cy 4 (X2, Rz) homotopic to a reduced
loop in Cy u(X1, R1). But Cy (X1, R1) is essentially 1-connected, because
Cy (X1, Ry) is so. Therefore C, (X2, Rp) is essentially 1-connected.

(4) Suppose (X;; R;) results from (Xy; Ry) by T; 1, and Cy (X3, Rp) is es-
sentially 1-connected. For each reduced loop p in C, (X1, R;) we can find a
simple diagram M, over (Xj; R;) with M, = p and v(g) > —Aforad >0

and all vertices g in M,. p has no edge labelled by y or o

Since r is
the only relation in R involving y, we can remove all occurrences of y (or
y~!) in the interior by Lyndon reductions. Thus without loss we can assume
that M, is a diagram over (X;; R;) and therefore C, (X1, Ry) is essentially
1-connected.

Let G be a finitely presented group and suppose that [x] € *='. By
Theorem 1 there is a finite presentation (X; R) of G such that R 2 {t~'at =
wy | € X*1\ {t,t71}} where t is a distinguished generator with x(t) >0
and vy (t™12t) < vy(w;) for all z € X*1 z #t, t~1. In this situation we
can show that [x] € *£? implies 71 (Cyx (X, R)) = 1.

Lemma 3. Let G be a finitely presented group and [x] € *$1, Suppose
the presentation (X; R) of G contains the defining relations t— 1zt = wy, for
all z € X*1\ {t,t=1} according to Theorem 1. Then we have:

If [x] € *E? then Cy, (X, R) is 1-connected.
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Proof. Since [x] € *£*  C,, (X, R) is essentially 1-connected, i.e.
for each loop p based at 1 in C, (X, R) there is a simple diagram M, with
boundary p such that vy (g) > —A for all g in M, and a certain fixed real
number A > 0. Since R D {t"lzt = w,| for all z € X*'\ {t,t71}} pis
freely homotopic in C, (X, R) to a loop p' based at t* for k € N such that
x(t¥) > A. G acts on C(X, R) and the valuation v, fulfills (*) of 2.3, thus
there is a simple diagram M,, with M, = p' such that for every vertex g
of M, we have vy(g) > 0. This implies that C, (X, R) is 1-connected.

3.5 We assume that G has a presentation (X;R) as in L.emma 3. If r is
a relation in R, say r = 7,23 - -z, (2; € X*!), we write # for the word
Wz, Wy, ... Wz, , and say that f results from r by conjugation by t. [We
put w, = tort ! if z =t or t7!] A connected and simply connected
diagram with boundary label 7 is denoted by M;. We want to choose the
base point b; of M; in dependence of the base point by of r, and accordingly
we demand for a valuated diagram with boundary r and M; in the interior
that vy (b1) = vy (bo) + vy (t) See Illustration 2.

Illustration 2

Theorem 3 (Criterion for *S?). Let G be a finitely presented group, and
[x] € *E'. We choose a presentation of G as in Lemma 3. Then [x] € o 5
if, and only if, for each relation r € RE! there is a simple diagram M; with
IM; =7 and vy (r) < vy (M;).

Proof. If [x] € *E? then the valuation subcomplex C,, of the Cayley
complex C of G with respect to the chosen presentation is, by Lemma 3,
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1-connected. Hence for each 7 (r € R) there is a diagram M based at 1
with dM = # and vy (M) > vy (7). But we can change the base point and
consider M as a diagram M’ based at t. Using the notation of Illustration
2, we see that vy (r) < vy (M').

Let p be a reduced loop in the valuation subcomplex C, based at 1.
Since the Cayley complex is 1-connected there is a simple diagram M with
dM = p. If v,(M) < 0 we proceed as follows: Let g be a vertex in M
with vy (g9) = vy(M). For all faces ry, r3,...,r, containing g we have

vx (i) = vx(9)-

Illustration 3

By replacing each face r; by the collar coming from conjugation by t
together with the diagram M; ., we obtain the situation as shown in Illus-
tration 4.

Illustration 4
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Obviously s; and s;'(1 < ¢ < n) in Illustration 4 are the same relations,
but inverse oriented. We can reduce all the faces s; by Lyndon reductions
and the critical vertex g disappears.

Illustration 5

We get a diagram M; which compared with M has only new vertices
h with vy (h) > v,(M). By iteration we finally reach a diagram M' with
AM' = p and vy (g) > O for all vertices g € M'.

As an immediate consequence of Theorem 3 we obtain

Corollary. Let G be a finitely presented group. Then *S% is an open
subset of S(G).

4. Ascending H N N-extensions with finitely presented base group

Suppose G = (B,t;t~ 1Bt = B, < B) is an ascending H N N-extension
with finitely generated base group B. For each generator b; of B, t~1b;t
can be written as a word in the generators of B. The associated character
xt with x:(t) = 1 and B C Ker x; fulfills the condition of Theorem 1, thus
[x:] € "B

If, on the other hand, a rational point [x] is in *E! then for a suitable
representative x there is a finite set X of generators of G such that x(t) =1
for a distinguished generator ¢t and x(z) = O for the others. We consider the
Cayley graph I' = I'(X) of G and denote by I'y the subgraph spanned by
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the vertices g € V' with vy (g) = 0. T has as vertices just the elements of
N = Ker x and Iy is a subgraph of the connected valuation subgraph T,
of I'. Hence N is finitely generated over the monoid (t | generated by ¢, say
N =1 (bo,by,...,b;). Let By = (bo,b1,...,b;). The normal closure of By
in G is N, and therefore we have t"1 Byt C N. Hence there is a positive
integer [ such that the group B = (ByU!ByU.. .U‘IBO) contains t "1 Byt. B
is closed under conjugation by t~!. Thus G is an ascending H N N-extension
with finitely generated base group B and stable letter t.

This proves

Theorem ([1], Proposition 4.3). Let x : G — Z be a discrete char-
acter, N = Ker x and t € G with x(t) = 1. The following statements are
equivalent:

(i) [x] € =1

(i1) N is finitely generated as a (t|-operator group.

(iii) G is an ascending HN N-estension G = (B,t; t" 1Bt = B;) with
finitely generated base group B C N.

(iv) If G is a descending HN N-eztension G = (C,t; t~1Cit = C) and
CCN thenC=N.

Let G be a finitely presented group, and x : G —» Z an epimorphism.
We characterize those [x] € *E! for which the base group B in the ascend-
ing HN N-extension of the theorem of Bieri, Neumann, Strebel is finitely
presented:

We fix the following notation: If G = (by,...,bn,t; t7 10t = u; (1 <
t < n), ry,...,rm) where the u; and r; are words in {b1,...,bp}*! is an
ascending H N N-extension, we write R = {ry,...,rm}, S = {t 1b;t = u; |
1<t¢<n}and X = {by,...,bn,t}.

Theorem 4. Let G be a finitely presented ascending HN N -extension.
G = (B,t;t Bt = B;) = (X; RUS) with finitely generated base group
B = (b1,...,b,), and x the associated homomorphism. Then B 1s finitely
presented if, and only f,

(1) [x] € *=? and
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(2) there is a finite set R' O R of words in {by,...,b,}*! such that G =
(X; R'US) and the component D_, of 1 in C_,(X,R'US) is 1-connected.

Proof. If B is finitely presented, then there is a finite set R' O R
of words in {b1,...,bs}*! such that G = (X; R'US) and (b;,...,bn; R')
is a finite presentation of B. We use the Cayley complex C(X; R' U S)
with respect to this presentation of G. It is easy to see that the associated
homomorphism x fulfills the criterion for [x] € *£2: Let v be a valuation on
C associated with [x].

1. If r € R' then 7 is a word in the generators of B, i.e. a relator of B.
Hence there is a diagram M; with v(M;) > v(r).

2. A defining relation s € S is of the form t~ bt = u; with u; =
bfll bf: ; (; = £1). We denote the edge path ufll uf”: by ;. For al;
1 <1 < n, we have the diagrams M; as in Illustration 6.

U
i
utl us2 uSk
1, i, iy
T t t t M % M.
Z
- — ... -
b1 b2 bk
*1 z3 Lo
U.

7

Illustration 6

Now we construct diagrams M; for each s € S such that vy (s) <
vy (Mj). See Illustration 7 where M; is the diagram M; with inverse orien-
tation.

Illustration 7
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For the specific choice u; = bzbi—lbg, e.g., we obtain:

Illustration 8

Let’s consider the component D_, of 1 in Cy,(X,R' U S): We take a
loop p at 1 in D_,. If p has edges labelled by t or t~1, we replace a subpath
of the form t_lb,-bj by one labelled u,-t_lbj. The exponent sum of ¢ in the
label of p is 0, hence we reach eventually a subword t~1b,t which can be
replaced by u;. We conclude that there is a path p', not containing ¢ or
t~!, homotopic to p (in D_,). Since p' is labelled by a relator of B there
is a diagram M with dM = p' and v, (h) = O for all vertices h in M. This
means that D_, is 1-connected.

We assume now that (1) and (2) are fulfilled. Note that (1) does not as-
sure automatically that the valuation subcomplex C, of the Cayley complex
C(X,R'U S) is 1-connected. But since S is a subset of the set of defining
relations, Lemma 3 shows that C,, in fact, is 1-connected.

The subcomplex Cj of C spanned by the g € V with v, (g) = 0 contains
the elements of B as vertices. Let Cp be the component of 1 in Cy. The
1-skeleton of Cg is the Cayley graph of B with respect to the generators b;,
by, ...,b,. We show that - after attaching finitely many relations if necessary
- Cp is 1-connected. This implies that B is finitely related.

Let p be a reduced loop in Cg. pis in D_,, thus there is a simple
diagram M; with dM; = p and v, (h) < O for every vertex h of M;. Put
a = max{v(h) | h € M;,r € R'} for the diagrams M; according to Theorem
3. Since C, is 1-connected we can proceed as in the proof of Theorem 3 to
remove vertices h of M; with v, (h) < 0. We do so until we reach a diagram
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M; still in D_, with M, = p and v, (Mz) > —a. M; is a diagram in the
‘strip’ of the Cayley complex limited by —a and 0.

For all j =1,2,...,a and all r € R', let #7) be the word in the gener-
ators of B resulting from r by conjugation with t/. Let R" = R'u {#()}.
We attach the faces determined by {#(/)} and get the Cayley complex C"
of G which contains C as a subcomplex. Now it is possible to pass from
M, to a diagram M' with v, (h) = O for all vertices h in M'. Hence C}, is
1-connected.

Corollary. Let G be a finitely presented group. x : G — Z a discrete
character, and N = Ker; x. Then N 1is finitely presented if, and only if,
both [x] and [—x] are in *TZ.

Proof. Choose t € G with x(t) = 1.

Suppose N to be finitely presented, say N = (Y ; R). Put X =Y U
{t} and S = {t"'y;t = u; | y; € Y}, where the u; are words in Y*!
resulting from y; by conjugation with t~1. G is the semidirect product
N x(t) presented by G = (X ; RU S), thus [x] € *S%. On the other hand G
is an ascending H N N-extension with base group N and stable letter t~1!,
ie. [-x] € 2.

Let [x] € *£? and [~x] € *=2. Since [x] and [—] are in *Z! N is finitely
generated, say N = (ny,ns,...n;), and therefore G has a finite presentation
(ny,n2, ...n;,t; R) such that R includes all relations expressing t—lni and
tn; for 1 < ¢ < laswordsin {n;,ny,...n;}*!. By Lemma 3 [x] € *£? implies
that the valuation subcomplex C, of C with respect to this presentation is
1-connected. By the same argument C_,, which coincides with D_,, is
1-connected. Hence N is finitely presented.

Remark. The Corollary above is a special case of the main theorem
in [6]: If G is a group of type F} and N a normal subgroup of G with G/N
Abelian then we have

N is of type Fy < *=* D S(G,N) = {[x] € S(G) | x(N) = 0}.
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5. Examples

5.1 Let G be the metabelian group

G = (a;sid3 2T lg = a?, ¢ b a3, [s,t] = 1)

and let x be the epimorphism x : G — Z defined by x(a) = x(s) =0, x(t) =
1. The subgroup B = (a,s) is the one-relator group B = (a,s; sl = a?).
By Theorem 4, [x] € *S%2. We can check this easily by writing down the
diagrams which are needed for an application of Theorem 3. See Illustration

9.

Furthermore, D_, is 1-connected in this example: Let p be a reduced
loop in D_,, based at 1 and ¢(p) the corresponding word. We observe that
the exponent sums of ¢t and s in ¢(p) are zero, and that the x-track of each
initial segment of ¢ (p) is non-positive. Using the relations t~!at = a® and
t~1st = s, p is homotopic in D_, to a loop p' such that ©(p') is a word in
a,a” 1, s, s71. Since the exponent sum of s in (p') is zero, we can use the
relation s~ las = a? to produce a loop p" which is homotopic in D_, to p'
and the corresponding word o(p'") involves only the letters a and a~!. But
the image of ©(p") in G is 1, i.e. the exponent sum of a in p(p") is zero.

Hence p is homotopic in D_, to the trivial loop.

S
s &
th ot £t
S
t ¢
S

Illustration 9

5.2 Let G be the group in the previous example. Using the criterion for 5 i
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and results of Bieri, Strebel [3] about *X! of metabelian groups, we calculate
in [6] the complement *E£%¢ of *%? for G.

The normal subgroup N of G generated by a and st~ ! is the kernel
of the discrete character x defined by x(¢) = 1 and x(s) = 1. We obtain
[x] € *£? and [—x] ¢ *E%. Thus N is not finitely presentable. (See [7] for
another argument for this fact.)

Illustration 10

lc ond "Nt dor O (n. 5.t 0 tae gt Tat=a’ e il =1).

5.3 In this third example we use Theorem 4 to show that a certain point [x] is
not in *2%: Let G be the metabelian group of Baumslag and Remeslennikov

G = {a,8,t; [a,8 tas) = 1,17 2at = as las, [5,1] = 1).

We consider the character x with x(t) = 1 and x(s) = 0. It is easy to see that
[x] € *=!. Let p be a closed reduced edge path in D_,. We can without loss
assume that p has only edges labelled by a, a=! and s, s~!. Since the base
group B = (a,s) has the presentation B = (a,s; [a,s77as’] =1, 5 > 0) the
label of p is a product of conjugates of these relations in the free group with
basis {a,s}. If for all { < n a commutes with s~*as* then

1=1t"'a,s "as"|t = [t 'at,s "t lats"] = [as"'as,s "asass"]
= [a,s” ("t U gs(nt1)], (see [7])

Interpreting these equations geometrically we see that for every 5 > O there
is a simple diagram M with boundary label dM = [a,s™?as’| such that
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vy (¢9) < O for each vertex g of M. Thus p is in D_, homotopic to the trivial
loop. Since B being the wreath product of two infinite cyclic groups is not
finitely presented, we obtain [x] ¢ *ZZ.

Recently, Bieri and Strebel proved that *£2 in this example is, in fact,
empty.
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