Geometric invariants and HNN-extensions Burkhardt Renz #### 1. Introduction For every HNN-extension (*) $$H = \langle B, t; t^{-1}B_1t = B_2 \rangle$$ over a base group B and with stable letter t one has the associated homomorphism $\chi: H \to \mathbb{Z}$ given by $\chi(t) = 1$ and $\chi(B) = 0$. Every homomorphism χ of a group G onto \mathbb{Z} can, of course, be regarded as the associated homomorphism of some HNN-decomposition of G; but in many circumstances G has, in fact, an HNN-decomposition over a finitely generated base group with associated homomorphism χ . This is, for instance, the case when G is finitely presented, see [2]. We call the HNN-extension (*) ascending if the first associated subgroup B_1 coincides with the base group B, so that the kernel N of the associated homomorphism χ is the union of the ascending chain $$\ldots \subset t^{-1}Bt \subset B \subset tBt^{-1} \subset t^2Bt^{-2} \subset \ldots$$ Correspondingly (*) is descending if $B_2 = B$. It is interesting to know which homomorphisms $\chi: G \to \mathbf{Z}$ are associated to an ascending HNN-decomposition over a finitely generated base group. This question is answered in [1] in terms of the 'geometric invariant' Σ of G. The Bieri-Neumann-Strebel invariant Σ of a finitely generated group G is a certain subset of the 'character sphere' S(G), by which we mean the set of all equivalence classes $[\chi] = \{\lambda \chi \mid 0 < \lambda \in \mathbf{R}\}$ of non-zero homomorphisms $\chi: G \to \mathbf{R}_{\mathrm{add}}$ under multiplication by positive real numbers. We should mention that Σ captures not only the information about ascending HNN-decompositions over finitely generated base groups but also characterizes the finitely generated normal subgroups of G with Abelian quotient. In this paper, I go one step further by investigating the question as to which homomorphisms $\chi: G \longrightarrow \mathbb{Z}$ are associated to an ascending HNN-extension over a finitely presented base group. The answer is given in terms of a new geometric invariant $^*\Sigma^2$. This is part of a more general concept in my Thesis [6] where I define a chain of higher geometric invariants $$S(G) \supseteq {}^*\Sigma^1 \supseteq {}^*\Sigma^2 \supseteq \cdots \supseteq {}^*\Sigma^k \cdots$$ generalizing $^*\Sigma^2$ and the Bieri-Neumann-Strebel invariant $\Sigma = -^*\Sigma^1$. The higher geometric invariant $^*\Sigma^k$ allows to decide as to whether a given normal subgroup N of G with G/N Abelian is of type F_k , i.e. has an Eilenberg-MacLane complex K(G,1) with finite k-skeleton. The paper is organized as follows. In §2 we extend homomorphisms $\chi:G\longrightarrow \mathbf{R}$ to valuations v_{χ} on the Cayley complex C=C(X;R) of a presentation $\langle X;R\rangle$ of G. In §3 we define the geometric invariants $^*\Sigma^1$ and $^*\Sigma^2$. The combinatorial characterization of $^*\Sigma^1$ in terms of certain loops in the Cayley graph of G shows that, up to a sign, $^*\Sigma^1$ coincides with the Bieri-Neumann-Strebel invariant. Generalizing this description to dimension 2 we get a combinatorial characterization of $^*\Sigma^2$ in terms of simple diagrams over $\langle X;R\rangle$. We use these descriptions to study ascending HNN-extensions with finitely generated base group in §4. We give the proof of the result in [1] in our geometric setting. Then we give necessary and sufficient conditions (in terms of $^*\Sigma^2$) for finite presentation of the base group B in an ascending HNN-extension $G=\langle B,t;t^{-1}Bt\leq B\rangle$. Acknowledgement. I would like to thank Robert Bieri for the many fruitful and stimulating discussions during the process of finding the results of my Thesis, which contains the theorem presented in this paper. I would also like to express my thanks to the Hermann-Willkomm-Stiftung, Frankfurt for its financial support of my journey to Singapore. # 2. Characters and valuations on the Cayley complex **2.1** Let G be a finitely generated group, and d the **Z**-rank of the abelianization G^{ab} of G. A character of G is a non-zero homomorphism $\chi: G \longrightarrow \mathbf{R}$ into the additive group of real numbers. Two characters are equivalent if they coincide up to multiplication by a positive real number. $Hom(G, \mathbf{R}) = Hom(G^{ab}, \mathbf{R})$ is a d-dimensional real vector space which can be identified with \mathbf{R}^d . The equivalence class $[\chi]$ of a character thus is the ray from 0 through χ in $Hom(G, \mathbf{R}) \cong \mathbf{R}^d$. The character sphere S(G) of G is defined to be $S(G) = \{[\chi] \mid \chi \in Hom(G, \mathbf{R}) \setminus \{0\}\}$. S(G) is homeomorphic to the unit sphere S^{d-1} . A character χ with infinite cyclic image is called a *discrete* character. The subset of the rational points of $S(G) \cong S^{d-1}$ consists of the classes of discrete characters and is dense in S(G). For a rational point $[\chi] \in S(G)$ we always find a representative χ with $\chi: G \longrightarrow \mathbf{Z} \subseteq \mathbf{R}$. A character χ allows us to interpret the ordering of \mathbf{R} in the preimage of χ : attached to each $[\chi] \in S(G)$, we consider the submonoid $G_{\chi} = \{g \mid \chi(g) \geq 0\}$ of G. G_{χ} does not depend upon the choice of the representative $\chi \in [\chi]$. **2.2** Let $\langle X; R \rangle$ be a presentation of G where R is a set of cyclically reduced words in the free group F(X) with basis X. We do not assume that X embeds in G, but will not distinguish notationally between words in $X^{\pm 1}$, i.e. elements of F(X), and their images in G. The Cayley graph $\Gamma = \Gamma(X)$ and the Cayley complex C = C(X; R) of G are defined as follows (see [5], III.4): The set V of vertices of C is the set G of elements of the group. The set E of edges of C is $G \times X^{\pm 1}$. An edge (g,x), by definition, links the vertex g to gx. [Note that gx here is regarded as an element of G.] The inverse oriented edge is (gx,x^{-1}) . We have a labelling function $\varphi:E\longrightarrow X^{\pm 1}$ defined by $\varphi((g,x))=x$. φ extends multiplicatively to edge paths in C: if $p=e_1e_2\ldots e_n$ is an edge path then $\varphi(p)=\varphi(e_1)\varphi(e_2)\cdots\varphi(e_n)$ is a word in F(X). $\varphi(p)$ is reduced if and only if p is a reduced path. p is a loop if and only if $\varphi(p)$ is in the normal closure of R in F(X). The set F of faces of C(X;R) is $G\times R^{\pm 1}$. A face (g,r) has as boundary the loop p_r at g with label $\varphi(p_r)=r$. The inverse of (g,r) is (g,r^{-1}) . The 1-skeleton of the Cayley complex C is called the Cayley graph $\Gamma(X)$ of G with respect to the generators X. **2.3** Let χ be a character of G and C the Cayley complex of G in the presentation $G = \langle X; R \rangle$. We extend χ to a valuation v_{χ} on C: If $g \in V$ is a vertex of C, we put $v_{\chi}(g) = \chi(g)$. For an edge e = (g, x) we define $v_{\chi}(e) = \min\{v_{\chi}(g), v_{\chi}(gx)\}$. If $p = e_1 e_2 \cdots e_n$ is an edge path beginning at g then the χ -track of p is the sequence $$(v_{\chi}(g), v_{\chi}(g\varphi(e_1)), v_{\chi}(g\varphi(e_1)\varphi(e_2)), \ldots, v_{\chi}(g\varphi(e_1)\varphi(e_2)\cdots\varphi(e_n)))$$ and $v_{\chi}(p)$ is defined to be the minimum of the χ -track of p. Accordingly we denote by $v_{\chi}(w)$ the minimum of the χ -track of a word w in $X^{\pm 1}$. If (g, r) is a face of C then $v_{\chi}((g, r))$ is the minimum of the χ -track of the boundary loop of (g, r). The automorphisms of the Cayley complex C, i.e. automorphisms of the combinatorial 2-complex C which preserve labels, are exactly those induced by left multiplication of G ([5], III.4.1.). G is the group of deck transformations of C. A valuation v_{χ} on C extending a character χ has the following property: $$(*) \quad v_\chi(gc) = \chi(g) + v_\chi(c) \quad \text{for } c \in V \text{ or } c \in E \text{ or } c \in F \text{ and all } g \in G.$$ Remark. The notion of a valuation on the combinatorial Cayley complex C(X;R) is the special case of a more general notation of valuations v_{χ} extending a character χ of G. Recall that a G-complex is a G-complex G together with an operation of G by homeomorphisms which permute the cells. If furthermore the stabilizer of each cell is trivial then G is a free G-complex. Let C be a free G-complex and $\chi \in Hom(G; \mathbf{R}) \setminus \{0\}$. A continuous function $v_{\chi} : C \longrightarrow \mathbf{R}$ is called a valuation on C associated with χ if - (1) $v_{\chi}(gc) = \chi(g) + v_{\chi}(c)$ for all $c \in C$, $g \in G$ - (2) $v_{\chi}(C^0) \subseteq \chi(G)$ [C⁰ is the 0-skeleton of C.] - (3) Let $\sigma \subseteq C$ be a cell with boundary $\partial \sigma$ then $$min v_{\chi}(\partial \sigma) \leq v_{\chi}(c) \leq max v_{\chi}(\partial \sigma)$$ for all $c \in \sigma$. If C is the geometric realization of the Cayley complex C(X;R) of a group G then C is the universal cover of the 2-dimensional CW-complex which is usually called the geometric realization of the presentation $\langle X; R \rangle$ of G (see e.g. [4], p.44). A combinatorial valuation on C(X; R) yields by piecewise linear extension a valuation on C. **2.4** A full subcomplex C' of the Cayley complex C = C(X; R) of a group G is a subcomplex with the following property: If e is an edge of C or f a face of C and all vertices g of e or of f are in C' then e or f is in C'. A full subcomplex C' of C is determined by the set of vertices of C'. Let v_{χ} be a valuation on C associated with the character χ . The valuation subcomplex C_v of C is defined to be the full subcomplex of C spanned by the submonoid G_{χ} , i.e. by $\{g \mid v_{\chi}(g) \geq 0\} \subseteq V$. We put $C_{v,\lambda}(\lambda \in \mathbf{R})$ for the full subcomplex of C generated by $\{g \mid v_{\chi}(g) \geq -\lambda\}$ and C_{-v} for the full subcomplex of C spanned by the subset $\{g \mid v_{\chi}(g) \leq 0\}$ of the vertices V of C. If $\Gamma = \Gamma(X)$ is the Cayley graph of G with respect to the generating set X then Γ_v is the subgraph spanned by G_{χ} . Γ_v contains those edges (g,x) of Γ for which $v_{\chi}(g) \geq 0$ and $v_{\chi}(gx) \geq 0$. Note that $C_{v_{\chi}} = C_{v_{\chi'}}$ and $\Gamma_{v_{\chi}} = \Gamma_{v_{\chi'}}$ if χ and χ' are equivalent characters. - 3. The geometric invariants $^*\Sigma^1$ and $^*\Sigma^2$ - 3.1 We keep the notation and conventions of section 2. Recall that the edge path group of a combinatorial 2-complex is isomorphic with the fundamental group of its geometric realization. **Definition.** Let G be a finitely generated group, X a finite generating set of G, and $[\chi] \in S(G)$. We put $[\chi] \in {}^*\Sigma^1$: \Leftrightarrow the valuation subgraph Γ_{v_χ} of the Cayley graph $\Gamma(X)$ of G is connected. **Lemma 1.** Let G be a finitely generated group and $[\chi] \in {}^*\Sigma^1$. Then the valuation subgraph $\Gamma_{v_\chi}(Y)$ of $\Gamma(Y)$ is connected for any finite set Y of generators of G. **Proof.** Let X be a finite set of generators of G such that $\Gamma_{v}(X)$ is connected, and let Y be another finite set of generators. Each $x_i \in X^{\pm 1}$ is expressible as a word w_i in the generators $Y^{\pm 1}$. We fix such expressions and put $\lambda = \min\{v_\chi(w_i)\}$. Since $\Gamma_v(X)$ is connected, for each vertex h of $\Gamma_v(Y)$ there is an edge path p in $\Gamma(Y)$ connecting 1 and h such that $v_\chi(p) \geq \lambda$. Furthermore, given two vertices h_1 , h_2 of $\Gamma_v(Y)$ with $v_\chi(h_1) \geq \mu$ for i = 1, 2 and some $\mu \geq 0$, we can find an edge path p' in $\Gamma_v(Y)$ which connects h_1 and h_2 and fulfills $v_\chi(p') \geq \mu + \lambda$. This follows from the fact that G acts on $\Gamma(Y)$ by left multiplication together with property (*) of 2.3. Let g be a vertex of $\Gamma_v(Y)$. Choose $t \in Y^{\pm 1}$ with $\chi(t) > 0$, and $k \in \mathbb{N}$ such that $\chi(t^k) \geq |\lambda|$. Then there is an edge path p_2 connecting t^k and gt^k such that $v_\chi(p_2) \geq 0$. Let p_1 be the edge path on $\Gamma_v(Y)$ corresponding to the word t^k and starting at 1, and p_3 the path with $\varphi(p_3) = t^{-k}$ starting at gt^k . Then $p_1p_2p_3$ is an edge path in $\Gamma_v(Y)$ which connects 1 and g, thus $\Gamma_v(Y)$ is connected. # **3.2** We give a combinatorial criterion for $[\chi] \in {}^*\Sigma^1$. **Theorem 1** (Criterion for $^*\Sigma^1$). Let G be a finitely generated group, X a finite set of generators, and $[\chi] \in S(G)$. Then $[\chi] \in {}^*\Sigma^1$ if, and only if, there is a $t \in X^{\pm 1}$ with $\chi(t) > 0$ such that for every $x \in X^{\pm 1} \setminus \{t, t^{-1}\}$ the conjugate ${}^{t^{-1}}x \in G$ can be expressed as a word w in $X^{\pm 1}$ with $v_\chi(t^{-1}xt) < v_\chi(w)$. **Proof.** Let $\Gamma = \Gamma(X)$ be the Cayley graph of G and Γ_v the valuation subgraph of Γ . If $[\chi] \in {}^*\Sigma^1$ then Γ_v is connected. Take a $t \in X^{\pm 1}$ with $\chi(t) > 0$. Consider the path $t^{-1}xt$ in Γ beginning at 1. If $\chi(x) > 0$ then the endpoint of $t^{-1}xt$ is Γ_v , thus there is also a path w in Γ_v beginning at 1 and ending at $t^{-1}xt$, and therefore $v_\chi(t^{-1}xt) < v_\chi(w)$. If $\chi(x) < 0$ then there exists an integer l > 0 such that the endpoint of the path $t^{-1}xt^l$ beginning at 1 lies in Γ_v . Let w' be a word in $X^{\pm 1}$ with $t^{-1}xt^l = w'$ (in G) and $v_\chi(w') > 0$. Thus $t^{-1}xt = w't^{-(l-1)}$ is a desired expression. Now we consider a vertex g in Γ_v together with a path p connecting 1 and g in Γ . If there is a vertex h in p with $v_\chi(h) < 0$ then we proceed as follows: Choose h such that $v_\chi(h) = v_\chi(p)$, and consider the part x of p. If $x \neq t$, t^{-1} and $y \neq t$, t^{-1} we have expressions $t^{-1}x = w_x$ and $t^{-1}y = w_y$ with $v_\chi(t^{-1}xt) < v_\chi(w_x)$ and $v_\chi(t^{-1}yt) < v_\chi(w_y)$. Thus we can pass to a path p' by using the paths labelled by w_x and w_y instead of x and y. If $x = t^{-1}$ or y = t we proceed in the same manner for y or x, respectively, and reduce the path p' afterwards. In any case the number of vertices c with $v_\chi(c) = v_\chi(p)$ decreases. Since X is a finite set, $\{v_\chi(w_x) - v_\chi(t^{-1}xt) \mid x \in X^{\pm 1} \setminus \{t, t^{-1}\}\}$ has a minimum > 0, and so iteration of the procedure yields eventually a path in Γ_v connecting 1 and g. Comparing Theorem 1 with [1], Proposition 2.1, it is easy to see that $^*\Sigma^1 = -\Sigma$. [- is the antipodal map of S(G).] Hence $^*\Sigma^1$ is an open subset of S(G). This follows easily from Theorem 1 too. Note that Bieri, Neumann, Strebel consider G as acting by the right on G', whereas we use left action according to the occidental custom to read edge paths in Γ from left to right. 3.3 A diagram M over the presentation $\langle X;R\rangle$ of G is a finite planar configuration of vertices, edges and faces fulfilling the following conditions: The oriented edges of M are labelled by the set $X^{\pm 1}$. If the edge e has label x then its inverse is labelled by x^{-1} . The boundary path of each face of M corresponds under the labelling to a cyclic permutation of a defining relation $r \in R$ or its inverse r^{-1} . A connected and simply connected diagram M with boundary ∂M a reduced loop p based at 1 describes the equivalence in the edge path group of C(X;R) of p to the trivial path (see [5], III.4 and V.1). We call a connected and simply connected diagram with reduced boundary loop a simple diagram. If a diagram M has two faces which are neighboured as shown in the following illustration Illustration 1. Lyndon reduction then we can reduce M by shrinking the interior of the loop labelled ww^{-1} . We refer to this kind of reduction of diagram as Lyndon reduction. Unlike the usual definition of diagrams we do allow trivial faces labelled by $tt^{-1}t^{-1}t$ for a distinguished generator t of G. This deviation simplifies the drawing of diagrams that contain paths coming from conjugation of a word by t. Each closed path in a simple diagram M is labelled by a relator of G, i.e. a consequence of the defining relations. Thus if we choose a base point of M then every vertex of M can uniquely be labelled by an element of G. For a given valuation v_X of the Cayley complex C(X;R) of G we get after the choice of a base point in M a valuated simple diagram. We denote $v_X(M) = \min\{v_X(g)|g \text{ is vertex in } M\}$. Obviously, we obtain: **Theorem 2.** Let $G = \langle X; R \rangle$ be a finitely generated group, and C the Cayley complex together with a valuation v_{χ} associated with the character χ . Then the valuation subcomplex C_v is 1-connected if, and only if, C_v is connected and for each reduced loop p at $1 \in C$ with $v_{\chi}(p) \geq 0$ there is a simple diagram M with $\partial M = p$ such that $v_{\chi}(g) \geq 0$ for every vertex g of M. 3.4. Now we pass to the geometric invariant Σ^2 . **Definition.** Let G be a finitely generated group and $[\chi] \in S(G)$. Then we define $[\chi] \in {}^*\Sigma^2 : \Leftrightarrow$ there is a finite presentation $\langle X; R \rangle$ of G such that the valuation subcomplex C_{v_χ} of the Cayley complex C(X; R) of G is 1-connected. From the definitions we see that $S(G) \supseteq {}^*\Sigma^1 \supseteq {}^*\Sigma^2$ for a finitely generated group. **Remark.** We should mention that there is a generalization: A character $[\chi] \in S(G)$ is, by definition, in $^*\Sigma^k$ $(k \ge 1)$ if there is an Eilenberg- Maclane complex K = K(G,1) with finite k-skeleton such that the valuation subcomplex C_v of the universal cover C of K is (k-1)-connected. [v is a valuation extending χ on the free G-complex C.] [6] If we change the finite presentation of G, then the valuation subcomplex of the Cayley complex of G will not, in general, remain 1-connected. But a weaker property of the valuation subcomplex is independent of the choice of the finite presentation of G. **Definition.** Let C be the Cayley complex of G with respect to the finite presentation $G = \langle X; R \rangle$ and let v_{χ} be a valuation on C. Suppose C_v is connected. We say that the valuation subcomplex C_v is essentially 1-connected if there is a real number $\lambda \geq 0$ such that the homomorphism $\pi_1(C_v) \longrightarrow \pi_1(C_{v,\lambda})$ induced by the inclusion $C_v \longrightarrow C_{v,\lambda}$ is trivial. Analogously to Theorem 2, C_v is essentially 1-connected if, and only if, C_v is connected and there exists a $\lambda \geq 0$ such that for every reduced loop based at 1 in C_v we can find a simple diagram M with $\partial M = p$ and $v(g) \geq -\lambda$ for every vertex g of M. **Lemma 2.** Suppose G is a finitely presented group and $[\chi] \in {}^*\Sigma^2$. If $\langle Y; S \rangle$ is a finite presentation of G, then $C_v(Y, S)$ is essentially 1-connected. [v stands for a valuation on C(Y, S) associated with $[\chi]$.] **Proof.** Let $\langle X; R \rangle$ be a finite presentation of G such that $C_v(X; R)$ is 1-connected. We can pass from $\langle X; R \rangle$ to the presentation $\langle Y; S \rangle$ of G by a finite sequence of Tietze transformations. Hence it is sufficient to study the effect of Tietze transformations to the corresponding valuation subcomplexes and to prove that essential 1-connectivity is preserved. Let's fix the following notation: $$T_1:\langle X_1;R_1\rangle \longrightarrow \langle X_2;R_2\rangle$$ where $X_2 = X_1$ and $R_2 = R_1 \cup \{r\}$ for a consequence r of R_1 . $$T_2:\langle X_1;R_1\rangle\longrightarrow\langle X_2;R_2\rangle$$ where $X_2 = X_1 \cup \{y\}$ and $R_2 = R_1 \cup \{r\}$ for a letter $y \notin X_1$ and a relation $r = y^{-1}w$ expressing y as a word w in $X_1^{\pm 1}$. T_1^{-1} and T_2^{-1} are the transformations in the opposite direction. In both cases, we obviously can view $C(X_1, R_1)$ as a subcomplex of $C(X_2; R_2)$. - (1) If one performs T_1 on $\langle X_1; R_1 \rangle$ then $C_v(X_2; R_2)$ is essentially 1-connected, provided that this was the case for $C_v(X_1, R_1)$. - (2) Now we consider T_1^{-1} . Suppose $C_v(X_2, R_2)$ is essentially 1-connected, i.e. for every reduced loop p at 1 in $C_v(X_1, R_1)$ there is a simple diagram M over $\langle X_2; R_2 \rangle$ with $\partial M = p$ and $v(g) \geq -\lambda$ for some $\lambda \geq 0$ and for all vertices g of M. Since r is a consequence of R_1 there is a simple diagram M_r over $\langle X_1; R_1 \rangle$ with $\partial M_r = r$. Let $\mu = \max\{|v_\chi(g) v_\chi(h)| \mid g, h \text{ vertices of } M_r\}$. We replace each face of M corresponding to r by M_r and obtain a simple diagram M' with $\partial M' = p$ and $v(g) \geq -\lambda \mu$ for every g in M'. M' is now a diagram in $C(X_1, R_1)$, hence $C_v(X_1, R_1)$ is essentially 1-connected. - (3) Suppose $C_v(X_1, R_1)$ is essentially 1-connected. Now we perform T_2 on $\langle X_1; R_1 \rangle$. Put $\mu = \max\{|v_\chi(g) v_\chi(h)| \mid g, h \text{ vertices of } r\}$. Each reduced loop based at 1 in $C_v(X_2, R_2)$ is in $C_{v,\mu}(X_2, R_2)$ homotopic to a reduced loop in $C_{v,\mu}(X_1, R_1)$. But $C_{v,\mu}(X_1, R_1)$ is essentially 1-connected, because $C_v(X_1, R_1)$ is so. Therefore $C_v(X_2, R_2)$ is essentially 1-connected. - (4) Suppose $\langle X_1; R_1 \rangle$ results from $\langle X_2; R_2 \rangle$ by T_2^{-1} , and $C_v(X_2, R_2)$ is essentially 1-connected. For each reduced loop p in $C_v(X_1, R_1)$ we can find a simple diagram M_p over $\langle X_2; R_2 \rangle$ with $\partial M_p = p$ and $v(g) \geq -\lambda$ for a $\lambda \geq 0$ and all vertices g in M_p . p has no edge labelled by q or q. Since q is the only relation in q involving q, we can remove all occurrences of q (or q in the interior by Lyndon reductions. Thus without loss we can assume that q is a diagram over q involving q and therefore q is essentially 1-connected. Let G be a finitely presented group and suppose that $[\chi] \in {}^*\Sigma^1$. By Theorem 1 there is a finite presentation $\langle X; R \rangle$ of G such that $R \supseteq \{t^{-1}xt = w_x \mid x \in X^{\pm 1} \setminus \{t, t^{-1}\}\}$ where t is a distinguished generator with $\chi(t) > 0$ and $v_\chi(t^{-1}xt) < v_\chi(w_x)$ for all $x \in X^{\pm 1}$, $x \neq t$, t^{-1} . In this situation we can show that $[\chi] \in {}^*\Sigma^2$ implies $\pi_1(C_{v_\chi}(X, R)) = 1$. **Lemma 3.** Let G be a finitely presented group and $[\chi] \in {}^*\Sigma^1$. Suppose the presentation $\langle X; R \rangle$ of G contains the defining relations $t^{-1}xt = w_x$ for all $x \in X^{\pm 1} \setminus \{t, t^{-1}\}$ according to Theorem 1. Then we have: If $[\chi] \in {}^*\Sigma^2$ then $C_{v_\chi}(X,R)$ is 1-connected. **Proof.** Since $[\chi] \in {}^*\Sigma^2$ $C_{v_\chi}(X,R)$ is essentially 1-connected, i.e. for each loop p based at 1 in $C_v(X,R)$ there is a simple diagram M_p with boundary p such that $v_\chi(g) \geq -\lambda$ for all g in M_p and a certain fixed real number $\lambda \geq 0$. Since $R \supseteq \{t^{-1}xt = w_x | \text{ for all } x \in X^{\pm 1} \setminus \{t,t^{-1}\}\}$ p is freely homotopic in $C_v(X,R)$ to a loop p' based at t^k for $k \in \mathbb{N}$ such that $\chi(t^k) \geq \lambda$. G acts on C(X,R) and the valuation v_χ fulfills (*) of 2.3, thus there is a simple diagram $M_{p'}$ with $\partial M_{p'} = p'$ such that for every vertex g of $M_{p'}$ we have $v_\chi(g) \geq 0$. This implies that $C_v(X,R)$ is 1-connected. 3.5 We assume that G has a presentation $\langle X;R\rangle$ as in Lemma 3. If r is a relation in R, say $r=x_1x_2\cdots x_n$ $(x_i\in X^{\pm 1})$, we write \hat{r} for the word $w_{x_1}w_{x_2}\dots w_{x_n}$, and say that \hat{r} results from r by conjugation by t. [We put $w_x=t$ or t^{-1} if x=t or t^{-1} .] A connected and simply connected diagram with boundary label \hat{r} is denoted by $M_{\hat{r}}$. We want to choose the base point b_1 of $M_{\hat{r}}$ in dependence of the base point b_0 of r, and accordingly we demand for a valuated diagram with boundary r and $M_{\hat{r}}$ in the interior that $v_\chi(b_1)=v_\chi(b_0)+v_\chi(t)$ See Illustration 2. #### Illustration 2 **Theorem 3** (Criterion for $^*\Sigma^2$). Let G be a finitely presented group, and $[\chi] \in ^*\Sigma^1$. We choose a presentation of G as in Lemma 3. Then $[\chi] \in ^*\Sigma^2$ if, and only if, for each relation $r \in R^{\pm 1}$ there is a simple diagram $M_{\hat{r}}$ with $\partial M_{\hat{r}} = \hat{r}$ and $v_{\chi}(r) < v_{\chi}(M_{\hat{r}})$. **Proof.** If $[\chi] \in {}^*\Sigma^2$ then the valuation subcomplex $C_{v_{\chi}}$ of the Cayley complex C of G with respect to the chosen presentation is, by Lemma 3, 1-connected. Hence for each \hat{r} $(r \in R)$ there is a diagram M based at 1 with $\partial M = \hat{r}$ and $v_{\chi}(M) \geq v_{\chi}(\hat{r})$. But we can change the base point and consider M as a diagram M' based at t. Using the notation of Illustration 2, we see that $v_{\chi}(r) < v_{\chi}(M')$. Let p be a reduced loop in the valuation subcomplex C_v based at 1. Since the Cayley complex is 1-connected there is a simple diagram M with $\partial M = p$. If $v_\chi(M) < 0$ we proceed as follows: Let g be a vertex in M with $v_\chi(g) = v_\chi(M)$. For all faces r_1, r_2, \ldots, r_n containing g we have $v_\chi(r_i) = v_\chi(g)$. Illustration 3 By replacing each face r_i by the collar coming from conjugation by t together with the diagram $M_{\hat{r}_i}$, we obtain the situation as shown in Illustration 4. A segmed and selection 4 segent days O to O selection Obviously s_i and $s_i'(1 \le i \le n)$ in Illustration 4 are the same relations, but inverse oriented. We can reduce all the faces s_i by Lyndon reductions and the critical vertex g disappears. Illustration 5 We get a diagram M_1 which compared with M has only new vertices h with $v_{\chi}(h) > v_{\chi}(M)$. By iteration we finally reach a diagram M' with $\partial M' = p$ and $v_{\chi}(g) \geq 0$ for all vertices $g \in M'$. As an immediate consequence of Theorem 3 we obtain Corollary. Let G be a finitely presented group. Then $^*\Sigma^2$ is an open subset of S(G). ## 4. Ascending HNN-extensions with finitely presented base group Suppose $G = \langle B, t; t^{-1}Bt = B_2 \leq B \rangle$ is an ascending HNN-extension with finitely generated base group B. For each generator b_i of B, $t^{-1}b_it$ can be written as a word in the generators of B. The associated character χ_t with $\chi_t(t) = 1$ and $B \subset \operatorname{Ker} \chi_t$ fulfills the condition of Theorem 1, thus $[\chi_t] \in {}^*\Sigma^1$. If, on the other hand, a rational point $[\chi]$ is in $^*\Sigma^1$ then for a suitable representative χ there is a finite set X of generators of G such that $\chi(t)=1$ for a distinguished generator t and $\chi(x)=0$ for the others. We consider the Cayley graph $\Gamma=\Gamma(X)$ of G and denote by Γ_0 the subgraph spanned by the vertices $g \in V$ with $v_{\chi}(g) = 0$. Γ_0 has as vertices just the elements of $N = \text{Ker } \chi$ and Γ_0 is a subgraph of the connected valuation subgraph Γ_v of Γ . Hence N is finitely generated over the monoid $\langle t \mid$ generated by t, say $N = \stackrel{\langle t \mid}{\langle} b_0, b_1, \ldots, b_k \rangle$. Let $B_0 = \langle b_0, b_1, \ldots, b_k \rangle$. The normal closure of B_0 in G is N, and therefore we have $t^{-1}B_0t \subseteq N$. Hence there is a positive integer l such that the group $B = \langle B_0 \cup {}^tB_0 \cup \ldots \cup {}^{t^l}B_0 \rangle$ contains $t^{-1}B_0t$. B is closed under conjugation by t^{-1} . Thus G is an ascending HNN-extension with finitely generated base group B and stable letter t. This proves **Theorem** ([1], Proposition 4.3). Let $\chi : G \longrightarrow \mathbb{Z}$ be a discrete character, $N = \text{Ker } \chi$ and $t \in G$ with $\chi(t) = 1$. The following statements are equivalent: - (i) $[\chi] \in {}^*\Sigma^1$. - (ii) N is finitely generated as a $\langle t |$ -operator group. - (iii) G is an ascending HNN-extension $G = \langle B, t; t^{-1}Bt = B_2 \rangle$ with finitely generated base group $B \subseteq N$. - (iv) If G is a descending HNN-extension $G = \langle C, t; t^{-1}C_1t = C \rangle$ and $C \subseteq N$ then C = N. Let G be a finitely presented group, and $\chi:G \to \mathbf{Z}$ an epimorphism. We characterize those $[\chi] \in {}^*\Sigma^1$ for which the base group B in the ascending HNN-extension of the theorem of Bieri, Neumann, Strebel is finitely presented: We fix the following notation: If $G = \langle b_1, \ldots, b_n, t; t^{-1}b_it = u_i \ (1 \le i \le n), r_1, \ldots, r_m \rangle$ where the u_i and r_j are words in $\{b_1, \ldots, b_n\}^{\pm 1}$ is an ascending HNN-extension, we write $R = \{r_1, \ldots, r_m\}, S = \{t^{-1}b_it = u_i \mid 1 \le i \le n\}$ and $X = \{b_1, \ldots, b_n, t\}$. **Theorem 4.** Let G be a finitely presented ascending HNN-extension. $G = \langle B, t; t^{-1}Bt = B_2 \rangle = \langle X; R \cup S \rangle$ with finitely generated base group $B = \langle b_1, \ldots, b_n \rangle$, and χ the associated homomorphism. Then B is finitely presented if, and only if, (1) $$[\chi] \in {}^*\Sigma^2$$ and (2) there is a finite set $R' \supseteq R$ of words in $\{b_1, \ldots, b_n\}^{\pm 1}$ such that $G = \langle X; R' \cup S \rangle$ and the component D_{-v} of 1 in $C_{-v}(X, R' \cup S)$ is 1-connected. **Proof.** If B is finitely presented, then there is a finite set $R' \supseteq R$ of words in $\{b_1, \ldots, b_n\}^{\pm 1}$ such that $G = \langle X; R' \cup S \rangle$ and $\langle b_1, \ldots, b_n; R' \rangle$ is a finite presentation of B. We use the Cayley complex $C(X; R' \cup S)$ with respect to this presentation of G. It is easy to see that the associated homomorphism χ fulfills the criterion for $[\chi] \in {}^*\Sigma^2$: Let v be a valuation on C associated with $[\chi]$. - 1. If $r \in R'$ then \hat{r} is a word in the generators of B, i.e. a relator of B. Hence there is a diagram $M_{\hat{r}}$ with $v(M_{\hat{r}}) > v(r)$. - 2. A defining relation $s \in S$ is of the form $t^{-1}b_it = u_i$ with $u_i = b_{i_1}^{\varepsilon_1} \dots b_{i_k}^{\varepsilon_k}$; $(\varepsilon_j = \pm 1)$. We denote the edge path $u_{i_1}^{\varepsilon_1} \dots u_{i_k}^{\varepsilon_k}$ by \hat{u}_i . For all $1 \le i \le n$, we have the diagrams M_i as in Illustration 6. #### Illustration 6 Now we construct diagrams $M_{\hat{s}}$ for each $s \in S$ such that $v_{\chi}(s) < v_{\chi}(M_{\hat{s}})$. See Illustration 7 where \bar{M}_i is the diagram M_i with inverse orientation. Illustration 7 For the specific choice $u_i = b_2 b_1^{-1} b_3$ e.g., we obtain: ### Illustration 8 Let's consider the component D_{-v} of 1 in $C_v(X, R' \cup S)$: We take a loop p at 1 in D_{-v} . If p has edges labelled by t or t^{-1} , we replace a subpath of the form $t^{-1}b_ib_j$ by one labelled $u_it^{-1}b_j$. The exponent sum of t in the label of p is 0, hence we reach eventually a subword $t^{-1}b_kt$ which can be replaced by u_k . We conclude that there is a path p', not containing t or t^{-1} , homotopic to p (in D_{-v}). Since p' is labelled by a relator of B there is a diagram M with $\partial M = p'$ and $v_{\chi}(h) = 0$ for all vertices h in M. This means that D_{-v} is 1-connected. We assume now that (1) and (2) are fulfilled. Note that (1) does not assure automatically that the valuation subcomplex C_v of the Cayley complex $C(X, R' \cup S)$ is 1-connected. But since S is a subset of the set of defining relations, Lemma 3 shows that C_v , in fact, is 1-connected. The subcomplex C_0 of C spanned by the $g \in V$ with $v_{\chi}(g) = 0$ contains the elements of B as vertices. Let C_B be the component of 1 in C_0 . The 1-skeleton of C_B is the Cayley graph of B with respect to the generators b_1 , b_2, \ldots, b_n . We show that - after attaching finitely many relations if necessary - C_B is 1-connected. This implies that B is finitely related. Let p be a reduced loop in C_B . p is in D_{-v} , thus there is a simple diagram M_1 with $\partial M_1 = p$ and $v_\chi(h) \leq 0$ for every vertex h of M_1 . Put $a = \max\{v(h) \mid h \in M_{\hat{r}}, r \in R'\}$ for the diagrams $M_{\hat{r}}$ according to Theorem 3. Since C_v is 1-connected we can proceed as in the proof of Theorem 3 to remove vertices h of M_1 with $v_\chi(h) < 0$. We do so until we reach a diagram M_2 still in D_{-v} with $\partial M_2 = p$ and $v_{\chi}(M_2) \geq -a$. M_2 is a diagram in the 'strip' of the Cayley complex limited by -a and 0. For all $j=1,2,\ldots,a$ and all $r\in R'$, let $\hat{r}^{(j)}$ be the word in the generators of B resulting from r by conjugation with t^j . Let $R''=R'\cup\{\hat{r}^{(j)}\}$. We attach the faces determined by $\{\hat{r}^{(j)}\}$ and get the Cayley complex C'' of G which contains C as a subcomplex. Now it is possible to pass from M_2 to a diagram M' with $v_\chi(h)=0$ for all vertices h in M'. Hence C''_B is 1-connected. Corollary. Let G be a finitely presented group. $\chi: G \to \mathbb{Z}$ a discrete character, and $N = \operatorname{Ker} \ ; \ \chi$. Then N is finitely presented if, and only if, both $[\chi]$ and $[-\chi]$ are in $^*\Sigma^2$. **Proof.** Choose $t \in G$ with $\chi(t) = 1$. Suppose N to be finitely presented, say $N = \langle Y; R \rangle$. Put $X = Y \cup \{t\}$ and $S = \{t^{-1}y_it = u_i \mid y_i \in Y\}$, where the u_i are words in $Y^{\pm 1}$ resulting from y_i by conjugation with t^{-1} . G is the semidirect product $N \rtimes \langle t \rangle$ presented by $G = \langle X; R \cup S \rangle$, thus $[\chi] \in {}^*\Sigma^2$. On the other hand G is an ascending HNN-extension with base group N and stable letter t^{-1} , i.e. $[-\chi] \in {}^*\Sigma^2$. Let $[\chi] \in {}^*\Sigma^2$ and $[-\chi] \in {}^*\Sigma^2$. Since $[\chi]$ and $[-\chi]$ are in ${}^*\Sigma^1$ N is finitely generated, say $N = \langle n_1, n_2, \dots n_l \rangle$, and therefore G has a finite presentation $\langle n_1, n_2, \dots n_l, t; R \rangle$ such that R includes all relations expressing ${}^{t-1}n_i$ and tn_i for $1 \leq i \leq l$ as words in $\{n_1, n_2, \dots n_l\}^{\pm 1}$. By Lemma 3 $[\chi] \in {}^*\Sigma^2$ implies that the valuation subcomplex C_v of C with respect to this presentation is 1-connected. By the same argument C_{-v} , which coincides with D_{-v} , is 1-connected. Hence N is finitely presented. **Remark.** The Corollary above is a special case of the main theorem in [6]: If G is a group of type F_k and N a normal subgroup of G with G/N Abelian then we have $$N$$ is of type $F_k \Leftrightarrow {}^*\Sigma^k \supseteq S(G,N) = \{[\chi] \in S(G) \mid \chi(N) = 0\}.$ ### 5. Examples ## 5.1 Let G be the metabelian group $$G = \langle a, s, t; s^{-1}a = a^2, t^{-1}a = a^3, [s, t] = 1 \rangle$$ and let χ be the epimorphism $\chi: G \longrightarrow \mathbf{Z}$ defined by $\chi(a) = \chi(s) = 0$, $\chi(t) = 1$. The subgroup $B = \langle a, s \rangle$ is the one-relator group $B = \langle a, s ; s^{-1}a = a^2 \rangle$. By Theorem 4, $[\chi] \in {}^*\Sigma^2$. We can check this easily by writing down the diagrams which are needed for an application of Theorem 3. See Illustration 9. Furthermore, D_{-v} is 1-connected in this example: Let p be a reduced loop in D_{-v} based at 1 and $\varphi(p)$ the corresponding word. We observe that the exponent sums of t and s in $\varphi(p)$ are zero, and that the χ -track of each initial segment of $\varphi(p)$ is non-positive. Using the relations $t^{-1}at = a^3$ and $t^{-1}st = s$, p is homotopic in D_{-v} to a loop p' such that $\varphi(p')$ is a word in a, a^{-1}, s, s^{-1} . Since the exponent sum of s in $\varphi(p')$ is zero, we can use the relation $s^{-1}as = a^2$ to produce a loop p'' which is homotopic in D_{-v} to p' and the corresponding word $\varphi(p'')$ involves only the letters a and a^{-1} . But the image of $\varphi(p'')$ in G is 1, i.e. the exponent sum of a in $\varphi(p'')$ is zero. Hence p is homotopic in D_{-v} to the trivial loop. Illustration 9 **5.2** Let G be the group in the previous example. Using the criterion for Σ^2 and results of Bieri, Strebel [3] about $^*\Sigma^1$ of metabelian groups, we calculate in [6] the complement $^*\Sigma^{2c}$ of $^*\Sigma^2$ for G. The normal subgroup N of G generated by a and st^{-1} is the kernel of the discrete character χ defined by $\chi(t) = 1$ and $\chi(s) = 1$. We obtain $[\chi] \in {}^*\Sigma^2$ and $[-\chi] \notin {}^*\Sigma^2$. Thus N is not finitely presentable. (See [7] for another argument for this fact.) #### Illustration 10 $$^*\Sigma^{1c}$$ and $^*\Sigma^{2c}$ for $G = \langle a, s, t; s^{-1}as = a^2, t^{-1}at = a^3, [s, t] = 1 \rangle$. 5.3 In this third example we use Theorem 4 to show that a certain point $[\chi]$ is not in $^*\Sigma^2$: Let G be the metabelian group of Baumslag and Remeslennikov $$G = \langle a, s, t; [a, s^{-1}as] = 1, t^{-1}at = as^{-1}as, [s, t] = 1 \rangle.$$ We consider the character χ with $\chi(t)=1$ and $\chi(s)=0$. It is easy to see that $[\chi] \in {}^*\Sigma^1$. Let p be a closed reduced edge path in D_{-v} . We can without loss assume that p has only edges labelled by a, a^{-1} and s, s^{-1} . Since the base group $B=\langle a,s\rangle$ has the presentation $B=\langle a,s\; [a,s^{-j}as^j]=1,\ j>0\rangle$ the label of p is a product of conjugates of these relations in the free group with basis $\{a,s\}$. If for all $i\leq n$ a commutes with $s^{-i}as^i$ then $$1 = t^{-1}[a, s^{-n}as^{n}]t = [t^{-1}at, s^{-n}t^{-1}ats^{n}] = [as^{-1}as, s^{-n}as^{-1}ass^{n}]$$ $$= [a, s^{-(n+1)}as^{(n+1)}].$$ (see [7]) Interpreting these equations geometrically we see that for every j > 0 there is a simple diagram M with boundary label $\partial M = [a, s^{-j}as^j]$ such that $v_{\chi}(g) \leq 0$ for each vertex g of M. Thus p is in D_{-v} homotopic to the trivial loop. Since B being the wreath product of two infinite cyclic groups is not finitely presented, we obtain $[\chi] \notin {}^*\Sigma^2$. Recently, Bieri and Strebel proved that $^*\Sigma^2$ in this example is, in fact, empty. #### References - [1] Bieri, R., Neumann, W.D., Strebel, R., A geometric invariant of discrete groups, *Invent. Math.* 90 (1987), 451-477. - [2] Bieri, R., Strebel, R., Almost finitely presented soluble groups. Comment. Math. Helv. 53 (1978), 258-278. - [3] Bieri, R., Strebel, R., Valuations and finitely presented groups. *Proc. London Math. Soc.* (3) 41 (1980), 439-464. - [4] Brown, K.S., Cohomology of groups, Grad. Texts Math. 87, New York Heidelberg Berlin 1982. - [5] Lyndon, R.C., Schupp, P.E., Combinatorial Group Theory, Ergebnisse der Math. und ihrer Grenzgebiete 89, Berlin Heidelberg New York 1977 - [6] Renz, B., Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen, Thesis, Frankfurt 1988. - [7] Strebel, R., Finitely presented soluble groups, in: Group Theory essays for Philip Hall, edit. K.W. Gruenberg, J.E. Roseblade, London 1984. Mathematisches Seminar Johann Wolfgang Goethe-Universität Robert-Mayer-Str. 6-8 6000 Frankfurt Federal Republic of Germany