
The Benefits of a Feature Model in Banking
Experience Report

Claudia Fritsch
KfW

Frankfurt am Main, Germany
claudia.fritsch@kfw.de

Richard Abt
KfW

Frankfurt am Main, Germany
richard.abt@kfw.de

Burkhardt Renz
Technische Hochschule Mittelhessen

Gießen, Germany
burkhardt.renz@mni.thm.de

ABSTRACT
This experience report describes the surprisingly beneficial intro-
duction of feature modeling at KfW, a government promotional
bank. On behalf of the government and based on promotional di-
rectives, KfW grants retail loans to small and medium enterprises,
business founders, self-employed professionals, municipalities and
private individuals. The promotional directives, called programs,
define mandatory and optional properties of these loans. We have
now successfully built a feature model from these properties.

Our feature model will be presented with its outstanding char-
acteristic, which is an additional subtree containing the programs
as features. Complete and correct cross-tree constraints will also
allow us to analyze and scope the portfolio, reduce complexity,
and speed-up time-to-market. This is the advent of product line
development at KfW.

In order to standardize our portfolio, we have subsequently de-
veloped tools on top of the feature model, namely, a browser-based,
multi-user configurator assisting non-technical-affine users in their
product design, and a generator producing complete product docu-
mentation from the feature model and partial configurations. More
applications are currently underway.

This is our story of applying Software Product Line Engineering
in banking, a domain where it is unusual or even unknown. We
share our ideas, analyses, progress, and findings where the results
have been thrilling us for the past two years and will continue to
do so.

CCS CONCEPTS
• Software and its engineering→ Software product lines; Re-
quirements analysis; • Human-centered computing→ Informa-
tion visualization; • Applied computing → Online banking; • So-
cial and professional topics → Automation.

KEYWORDS
Software Product Line Engineering, Feature Modeling, Partial Con-
figuration, Document Generation, Retail Loans, Mass Customiza-
tion, Experience Report

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414946

ACM Reference Format:
Claudia Fritsch, Richard Abt, and Burkhardt Renz. 2020. The Benefits of a
Feature Model in Banking: Experience Report. In 24th ACM International
Systems and Software Product Line Conference (SPLC ’20), October 19–23,
2020, MONTREAL, QC, Canada. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3382025.3414946

1 INTRODUCTION
1.1 KfW
Founded in 1948 as a bank under public law and equipped with
funds of the European Recovery Program (ERP, “Marshall Plan”),
the Kreditanstalt für Wiederaufbau (KfW) has been giving loans
to companies, private individuals and German municipalities for
more than 70 years.

Today, KfW is one of the world’s leading promotional banks, and
one of Germany’s largest banks. On behalf of the Federal Republic of
Germany and the Federal States, KfW finances projects worldwide,
supports economic and social progress in developing and transition
countries, and promotes domestic investments in Germany.

Domestic promotion is off-the-shelf retail banking, and in this
report, we only consider KfW retail banking. The main financial
instruments are particularly favorable loans, reduced in price by
KfW funds or federal sponsorship.

1.2 KfW Retail Programs and Loans
Each year, KfW grants hundreds of thousands of retail loans. Most
of the properties that characterize such a loan are predefined by a
promotional directive called KfW retail program.

A KfW retail program is usually requested by a German ministry
and designed by a KfW credit domain expert. Each program aims
at a certain promotional goal, such as environmental protection, re-
newables, energy efficient production, home ownership, education
or founding. Currently, KfW offers 55 different retail programs.

To define a retail program, a KfW domain expert authors a
program information sheet, which describes the program in all pos-
sible variants over 4 – 12 pages. Many program information sheets
contain one or more links to other documents, containing further
details, such as minimum technical requirements or state aid rules.

Usually, a retail loan is a financial service with a certain cash flow
profile. KfW retail loans have many more properties permitting
many more loan configurations, resulting in about 3,700 different
loan products. This wide variety in retail loans is unique for German
banks.

1.3 KfW Loan Life Cycle
Most KfW retail loans are brokered by on-lending banks, because
KfW does not have any retail branches. If a potential borrower

https://doi.org/10.1145/3382025.3414946
https://doi.org/10.1145/3382025.3414946
https://doi.org/10.1145/3382025.3414946

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Claudia Fritsch, Richard Abt, and Burkhardt Renz

wants to apply for a KfW loan, the software system of the on-
lending bank must request a KfW loan under a certain KfW retail
program by calling a KfW web service. The KfW banking software
checks the loan application, and if it is valid, it will respond within
seconds by issuing an immediate confirmation, which includes a
loan agreement.

The KfW banking software creates a loan account in the KfW
database, the most important parameters are:

• loan id
• borrower
• on-lending bank
• date of loan agreement
• loan amount
• interest rate
• intended purpose
• loan term (the number of years until the loan has to be fully
repaid)

• grace period (the number of years where the borrower only
pays interest)

• interest rate period (the number of years that the first interest
rate remains fixed)

• repayment pattern

The borrower accepts the loan agreement by requesting the loan
payment. After the grace period is over, the borrower starts to
repay his debt. The borrower must then prove that he has used the
payment to finance the intended purpose as provided in the loan
agreement.

During the remaining loan term, the KfW banking software
supervises the loan account and takes care of all ordinary and
extraordinary circumstances, such as prolongation, change of re-
payment schedule, change of borrower, etc. After the borrower has
fully repaid the loan, the loan account is closed.

1.4 Complexity of the Portfolio
For the past ten years each KfW retail program has been developed
and maintained separately. Domain experts working in different
divisions design, describe and maintain meticulously the retail
programs in a manual process. During program development, they
have to respect the demands of the ministries. In doing so they have
introduced new properties, values, rules and dependencies, which
have increased the complexity of the portfolio.

KfW loans are subsidized, either by a reduced interest rate, or
by a grant, or both. Usually, the amount of the grant is defined as
the minimum of a certain percentage of the loan amount and an
absolute maximum value. The percentage and the maximum value
depend on the program and on the quality of the subsidy standard
that the borrower achieves through the investment measures.

For instance, a new, energy efficient house that consumes only
40 percent of the energy compared to a reference house defined
by the German Energy Saving Regulation (EnEV), is eligible to a
20 % grant, at most €24,000. A new house that consumes 55 % of
the energy is eligible to a 15 % grant, at most €18,000.

However, in programs where such a reference does not exist,
the amount of the grant is computed individually, e.g., for deep
geothermal energy the amount of the grant depends on the borehole

depth. These exceptions seem to be inevitable and add complexity
to the portfolio.

Portfolio complexity has been growing constantly. It complicates
loan allocation and processing. The business logic that is imple-
mented in the KfW banking software needs to be adapted to each
program, sometimes even to program variants. Development costs
have been rising and time-to-market is several times longer than it
used to be.

We have observed that it would be impossible to simplify the
banking software if the portfolio remained as complex as it was.
Better time-to-market could only be achieved if the retail programs
were better structured and easier to manage.

2 MOTIVATION
2.1 Who Are We?
We are a team of KfW domain experts and business analysts work-
ing at the interface between the credit and the IT departments.
Our education and experiences cover banking, business adminis-
tration, economics, mathematics, computer science and software
engineering, particularly software product line development.

In 2017 we were assigned the task to “modularize” the KfW
retail programs. The idea was: if programs were assembled from
pre-defined reusable parts, the loan processing software could be
assembled from pre-defined reusable components, and time-to-
market would speed-up. We were supposed to find these reusable
parts. Unfortunately, but not unexpectedly, that turned out to be a
long-term project.

Although Product Line Engineering is usually applied in domains
of tangible software-intensive systems, we believe that it is also
applicable in our domain of financial services. This is so, because
the KfW programs implement the KfW mission, share a common
set of features, and are processed by a software-intensive system
built from a common set of assets [6].

We also believe that Product Line Engineering should be applied
to the very early stages of development, i.e., retail program develop-
ment, documentation and information, before we consider applying
it in software development.

2.2 Our Goals
Our primary goal is to speed-up time-to-market and to reduce
development costs.

To do this, we must shorten the development time of retail pro-
grams and software. To shorten development time, we must stan-
dardize our products. To standardize our products, we must reduce
the complexity of the portfolio.

Our journey to achieve these goals consists of the following
steps:

• We have explored and visualized our loan portfolio in a fea-
ture model (see section 3).

• We have been analyzing the complexity of the portfolio using
a configuration editor (see section 4).

• We have developed tools that define standards and prevent
growth of complexity (see section 5).

• While new applications of the feature model are underway,
our organization has begun the transition from developing
single programs to modeling the portfolio (see section 6).

The Benefits of a Feature Model in Banking SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

2.3 A First Attempt
In order to explore and visualize the complexity of our portfolio,
we started to collect properties of our programs and put them in a
table.

We figured that each program could be defined by a set of prop-
erties and their values. Properties include recipients and intended
purpose, eligible investment locations, loan terms and grace periods,
interest rate periods and repayment terms, fees and grants. Property
‘recipients’ can take values like private individual, entrepreneur or
company.

We found these properties mainly in the problem space, but also
in the solution space. In the problem space, program information
sheets, FAQs, precedences and expert knowledge describe proper-
ties and values. In the solution space, a subschema of our database
describes program properties and contains coded values.

We selected two retail programs and re-engineered their proper-
ties and values that distinguish these programs.

As a first attempt to visualize the properties, we created an Excel®
sheet, where each column represented a program property, and each
property could take several values. Each row was a possible combi-
nation of values of properties, and represented a configuration of
one loan.

Each value of a property we added to the Excel® sheet almost
doubled the number of rows. Soon, our Excel® sheet had 40 columns
and eight thousand rows. We tried to discover commonalities, vari-
abilities and exceptions, but there was so much redundancy in the
rows that we did not see the wood for the trees.

As a means to visualize complexity the Excel® sheet had failed.

3 THE FEATURE MODEL AND ITS
CHARACTERISTICS

We needed a redundancy-free model that displayed each property
and each property value only once. Familiar with feature model-
ing in the automotive industry, our team came up with the idea
of perceiving and modeling program properties and their values as
features. This chapter recounts how we constructed our special
feature model.

3.1 Designing the Feature Tree
From the set of properties and values we designed a hierarchy of
features. Because a feature configuration would be a retail loan,
we called the root “KfW retail loan”. The properties fell into six
categories, namely, recipient, investment, finance, sales, risk and
promotion. Each category became one subtree under the root. We
have structured the features in each subtree hierarchically. The
more general features are closer to the root, and the more specific
features are closer to the leaves. We encoded as many dependencies
as possible as tree constraints by carefully modeling the group types
of the features (and, or, alternative). At that time, we detailed the
features as far as necessary to differentiate between programs.

Many programs share a subset of the same properties, but the
properties differ in values. For example, every program defines
price categories according to loan terms and interest rate periods,
but the periods differ (program A: 5-5 / 10-10 / 20-10 years, program
B: 10-10 / 20-10 / 20-20 / 30-10 / 30-20 years, etc.).

As a feature modeling tool we have used FeatureIDE [12]. It was
easy to learn, easy to handle, extremely useful from the start, and
it has been convenient, fast, aesthetic and reliable ever since.

After one week, the feature tree presented about 60 % of the
features of the KfW programs systematically and redundancy-free.

3.2 Modeling Dependencies
The feature tree spanned an oversized product space. We had to add
cross-tree constraints (CTCs) in order to restrict the possible con-
figurations to permissible loan configurations. Because we wanted
to visualize and analyze the portfolio, the CTCs had to be complete
and correct.

Dependencies between features originate from the domain, i.e.,
from laws, requirements given by ministries, or preferences asked
by customers. We do not have to consider any technical constraints.

We were looking for CTCs among properties, but didn’t find
many. Only a few dependencies among properties are true for all
programs, e.g., “loan term ≥ interest rate period”. Many dependen-
cies are true for a few programs only. The CTCs we could define
did not rule out all configurations we do not sell as loans, for two
reasons:

(1) Some constraints require numerical expressions, like compar-
ison of values, which cannot easily be expressed in a feature
model.

(2) Many constraints depend on KfW retail programs, program
variants or certain groups of programs.

We solved the first problem by dividing the continuum in discrete,
mutually exclusive, seamless intervals: Instead of modeling

Figure 1

“50,000 EUR < loan amount <= 100,000 EUR”,
we introduced a feature “B_50_100T” in the
feature tree (where T indicates thousand),
and another feature representing the cur-
rency “EUR”. If B_50T_100T is selected (and
EUR is selected), the loan amount will lie be-
tween 50 thousand and 100 thousand EUR.

Figure 1 shows feature “loan amount”
(B_Kreditbetrag). Each subfeature represents
the left-open, right-closed interval of loan
amounts defined by the feature name. If
a certain configuration allows a maximum
loan amount of 100 thousand EUR, the fea-
tures B_1_25T, B_25T_30T, B_30T_50T and
B_50T_100T will be undefined, and all other
B_* features will be unselected. This is fine
for us because we do not have to calculate
figures from numeric features, and it allows us to use existing tool-
ing. The interval boundaries stem from the program differences
and might seem odd, but domain experts know these values well
and have never questioned this mixed bag.

We solved the second problem by adding an exceptional subtree
to our feature model, namely, the program subtree.

3.3 Creating the Program Subtree
We structured the set of KfW retail programs and organized the
programs in a promotionally and logically worthwhile hierarchy:

• The root is called program.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Claudia Fritsch, Richard Abt, and Burkhardt Renz

industry
segment

program
subtree

segments

property
subtrees

promotional goals

program families

retail
programs

program
variants

Figure 2: The feature tree with the program subtree

• Each KfW retail program falls in one of five segments (indus-
try, housing, municipal companies, municipality, grants), so
these five segments became children of the root.

• The industry segment is rather large and covers six promo-
tional goals, while other segments cover only one or two.
So a promotional goals level was introduced as children of
segments.

• Many programs belong to a program family. To keep the
tree balanced, every program was assigned a program fam-
ily as parent, and these program families are children of
promotional goals.

• Each KfW retail program is identified by a three-digit num-
ber. We prefixed the letter P because FeatureIDE did not
accept feature names beginning with a number. Every pro-
gram is a child of a program family.

• Each program has one or more program variants. A program
variant is defined by a set of properties including loan term,
grace period and interest rate period. Program variants are
children of programs and are the leaves of the tree.

The resulting level five hierarchy consists of 5 segments, 13 pro-
motional goals, 32 program families, 55 programs and 300 program

The Benefits of a Feature Model in Banking SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

variants. All feature groups are of type “alternative” and all paths
from the root to the leaves have the same length. We have put this
program tree under the root “KfW retail loan”. Figure 2 presents the
feature tree, program subtree partly expanded, and other subtrees
are collapsed.

Hence, programs are also features, their ancestors and children,
too.

From hereon we distinguish between property features and pro-
gram features. Any node of the program subtree is a program
feature, while the nodes of all other subtrees are property features.

3.4 Defining Cross-Tree Constraints
Within the feature model, constraints restrict the possible combi-
nations of features to permissible loan configurations.

As soon as the feature model contained the programs we could
write cross-tree constraints in the form of

“P270 ⇒ not stateAid”
“renewables ⇒ quarterlyRepayment”
“industry ⇒ fixedInterestRate“.

These CTCs connect program features with property features. Tech-
nically, the antecedent can contain features from any level of the
program subtree. We always use the feature on the highest possible
level to express that the implied properties are common to that
group, which, by the way, keeps the constraints short.

El-Sharkawy et al. [4] report that the accurate definition of cross-
tree constraints is not trivial to get right. In our case, three factors
facilitate the definition of CTCs:

(1) Thanks to the program subtree we can express dependencies
of properties on programs or groups of programs.

(2) FeatureIDE analyzes the feature model during editing (with
the help of the integrated solver SAT4J) and informs instantly
about possible errors (dead features, contradicting CTCs,
redundant constraints).

(3) The configuration editor of FeatureIDE empowers feature
modelers to test the CTCs they have written.

Step by step, we analyzed more programs and added features and
constraints to our model. As of today, the model contains 55 active
programs, 940 features, 700 thereof terminals, and 1,200 cross-tree
constraints. 821 features appear in cross-tree constraints, yielding
a cross-tree constraint ratio of 821 / 940 = 87.3 %, which is high,
relates to the complexity of our portfolio, and is not atypical for
real-world feature models [2]. FeatureIDE keeps running smoothly
and with high performance.

3.5 Complete Configurations Define Loans,
Partial Configurations Define Programs

Having defined the feature tree, its constraints and cross-tree con-
straints, FeatureIDE provides a configuration editor which is always
in sync with the feature model. In the configuration editor we can
configure loans. Each complete configuration defines a loan. Fea-
tureIDE statistics count about 800,000 different loan configurations
on our model.

Two virtually orthogonal aspects – programs and their prop-
erties – in one model offer (at least) two new possibilities in the
configuration editor:

• By selecting a program feature the user can instantly see
which properties are common to this program, not included
in the program, or variable.

• By selecting a property feature the user can instantly see
which programs include (or exclude) this property.

As an example, figure 3 shows on the left hand side the propa-
gation of a selected program feature on the property subtrees, and
on the right hand side the propagation of a selected property fea-
ture on the program subtree. The white filled and ticked checkbox
denotes the manually selected feature. Grey filled checkboxes are
unselected features. White filled checkboxes are open decisions,
so-called undefined features.

propagation
on the program

subtree

selected
property

selected
program

propagation
on property subtree

“recipient”

propagation
on property subtree

“purpose”

other
property subtrees

are collapsed

automatically
unselected feature

undefined
feature

automatically
selected feature

Figure 3: Left: Propagation of a selected program on prop-
erty subtrees. Right: Propagation of a selected property on
the program subtree.

We use these two techniques to
• test our feature model for correctness
• ensure completeness of the constraints.

Selecting a program in the configuration editor results in a partial
configuration showing the common properties of this program as
selected features, the non-properties as unselected features and
the variation points of this program as undefined features. Partial
configurations make sense because they define programs, and a
program defines a certain class of loans.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Claudia Fritsch, Richard Abt, and Burkhardt Renz

Selecting a property unselects all programs that do not include
this property and leaves all programs undefined that include this
property. Continuing to select undefined features until the configu-
ration is complete results in the configuration of a product, which
is a valid KfW loan. The selected features represent its properties
and their values. In the program subtree one terminal feature, i.e.,
a program variant, will be selected.

We have visualized the portfolio, and the CTCs are complete and
correct. The feature model makes commonalities and variabilities
visible, enabling us to compare the programs and to analyze the
portfolio.

Our approach is new to KfW, it is still an experiment and our
feature model is a prototype. We have a long way to go.

4 THE CONFIGURATOR AS AN ANALYSIS
TOOL

The feature model visualizes portfolio complexity. This chapter
covers howwe use the configuration editor of FeatureIDE to analyze
the complexity, and how we developed a configurator that runs in
a web browser, in order to empower our colleagues, who do not
want to install FeatureIDE, to analyze the portfolio.

4.1 Analyzing the Portfolio
For the first time we can see all features of all programs in one
model and free of redundancy. The feature model enables us to
configure loans and to experience how many configurations are
possible. It exposes commonalities, variabilities and exceptions.

To analyze the portfolio we select a property feature in the
configuration editor and observe the propagation on the program
subtree. If the selection of a property feature results in

• all programs being selected, the feature is common to all
programs and therefore a standard feature.

• many programs being selected, the feature is common to
many programs.

• one program or very few programs being selected, the feature
is an exception.

We have discovered dozens of features that made candidates for
elimination or standardization. We put them on a list and asked
domain experts where these exceptions came from and if they were
dispensable. Our colleagues have been working on that list. Often
it is not easy to come to a decision and put it into practice.

As a next step, we wanted to enable KfW domain experts outside
of our team to do analyses. We also needed expert help to verify
the feature model, especially the cross-tree constraints.

FeatureIDE is not a suitable tool for non-technical-affine people
who

• shouldn’t have to install a software development tool on
their computers

• don’t have access to our workspace and don’t want to edit
the feature model anyway

• don’t want to risk changing the model involuntarily.

4.2 YAP: A Client-Server Product Configurator
We decided to implement a configurator on our feature model that
would run in a web browser, so that our colleagues could configure a

product without having to install and use FeatureIDE.We were very
pleased about another highlight of FeatureIDE: its core functionality
can be used standalone, without GUI [9]. Fortunately, this library
is available for download at [3].

Our configurator should fulfill the following requirements:

(1) It should have the look-and-feel of FeatureIDE’s configura-
tion editor, and it should run in a web browser.

(2) A server component should store a given version of our
feature model read-only.

(3) If the user selected a feature in the configurator, FeatureIDE
should be called to propagate the selection on the model.

(4) The solution should allowmany users to use the configurator
simultaneously.

Closely cooperating with the FeatureIDE development team we
developed a client-server-solution and called it YAP - Yet Another
Product configurator:

A stateless Feature Model Service runs on the web server and
provides a RESTful interface to the feature model and FeatureIDE.
When a YAP client calls the Feature Model Service for the first time,
it returns the feature model and the initial feature configuration,
that is, the mandatory features are automatically selected, and
all other features are undefined. YAP presents the initial feature
configuration to the user. As soon as the user selects a feature, the
client calls the Feature Model Service and passes the configuration
including the user’s selection. The Feature Model Service calls the
FeatureIDE core, passes the configuration, requests propagation,
receives a new configuration, and returns it to the client, which
updates the presentation.

Figure 4 shows a screenshot of YAP. The left hand side displays
the feature tree top-down, next to each feature a four-state checkbox
indicating the state of the feature (manually selected, automatically
selected, unselected or undefined). The more user-friendly feature
names and tooltips that explain the features stem from feature
attributes. The right hand side displays a tile for each program, the
program name and number, the lowest and highest possible interest
rate and an expansion panel of program variants. The programs
and variants on the right hand side are always in sync with the
user’s configuration on the left hand side. All information seen in
the YAP browser window is contained in the feature model, except
for the interest rates which are calculated externally and read from
a file. If the user enters a string in the search field on the upper
right, the feature tree will shrink, only showing paths from the root
to feature names that contain this string.

The immediate propagation of a selection surprises and inspires
the YAP users. The fact that decision propagation prevents users
from making contradictory decisions [10] keeps baffling our audi-
ences. For the first time, domain experts can experience the com-
plexity of the portfolio. As of today, YAP is still a prototype and
is available for KfW employees only. They use it for analyses and
as a source of information on KfW programs. For instance, if you
want to find out which programs contain state aid, you can either
ask an expert, browse 30 program information sheets, or click fea-
ture “state aid” in YAP and observe its propagation on the program
subtree. YAP makes expert knowledge available to non-experts,
and it makes commonalities and variabilities of our programs more
visible, even for experts.

The Benefits of a Feature Model in Banking SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Figure 4: YAP, a configurator that runs in a web browser. The available programs and variants and their interest rates on the
right hand side adjust to selected features on the left hand side. Recipient and intended purpose have been selected.

5 THE FEATURE MODEL AS A VEHICLE FOR
STANDARDIZATION

We can analyze the portfolio and we are working on the reduction
of complexity of the existing portfolio. But each time new programs
are ordered and developed, new complexity can be introduced into
the portfolio. We need to define a standard to prevent the growth
of complexity.

Instead of “defining a standard” and ensuring that new devel-
opments comply, we provide tools that produce standard artifacts
and relieve domain experts. Our number one standardization mea-
sure is to generate documents from the feature model and partial
configurations. In this chapter we describe the development of our
document generator and its introduction as a standardization tool.

5.1 Generating Program Information Sheets
Complexity stems from the variety of program-specific business
logic. This business logic is reflected in the program information
sheets. A program information sheet describes the properties of
one KfW program: the promotional goal, who is eligible to apply,
intended purposes, financial parameters, etc., plus possible depen-
dencies between these properties, such as “if the intended purpose
is equipment, the loan term will be limited to 5 years.”

Program information sheets address people looking for a loan,
on-lending banks, private individuals, borrowers and ministries.

Program information sheets are written and maintained man-
ually as Microsoft Word® documents. Typically, a domain expert
authors and maintains one information sheet. Information sheets

share the KfW corporate design, and they should be uniform and
consistent. Because different programs share common features,
many information sheets contain information of the same kind.
The authors have to keep layout, structure, names, descriptions and
generic terms consistent across all information sheets manually.
With ever growing complexity and steadily increasing demands to
change the portfolio, this manual process is approaching its limits.

Features define KfW programs, and the description of a program
consists of the descriptions of its features. Figure 5 shows how fea-
tures map to a program information sheet. The order of the features
corresponds to the structure of the document. High- or middle-level
features correspond to headings. Low-level and terminal features
correspond to text snippets in the paragraphs.

If we

• maintain all text snippets centrally, so that each text snippet
exists only once, and

• generate program information sheets from our feature model
and these text snippets,

we can enforce that

• program information sheets share the same layout, document
structure and style,

• different program information sheets describe identical fea-
tures exactly the same way,

• program information sheets include only modeled features,
• exceptions are excluded or at least recognized as such.

We could kill two birds with one stone:

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Claudia Fritsch, Richard Abt, and Burkhardt Renz

Figure 5: Mapping of features to a program information sheet

(1) Program information sheets would no longer have to be
maintained and kept in sync manually.

(2) Generating program information sheets would be a means
of standardization.

FeatureHouse, an Eclipse plug-in, can compose software from a
feature model and a configuration, if suitable software artifacts are
supplied with the features [1]. For each selected feature, Feature-
House looks for a file with the same name as the feature. If such a
file exists, FeatureHouse composes the software artifacts included
in this file into a result file. This composition is called superimpo-
sition [12]. From the composer’s point of view, it does not matter
whether it composes software code or other text documents. It may
as well compose program information sheets from text snippets
attached to features in our model.

Normally, FeatureHouse requires a complete feature configu-
ration as input to the composition of documents. It does process
partial configurations, but ignores undefined features. Since the
generation of program information sheets must consider undefined
features, we needed another solution. Our document generator
should fulfill the following requirements

(1) generate a properly formatted program information sheet
from the feature model and the name of a program feature,

(2) generate the entire document, because no text snippet is
common to all program information sheets,

(3) generate text from undefined features, too, because selecting
a program leaves many decisions open,

(4) read short text snippets from the feature model instead from
files, because we do not want to maintain hundreds of text
files, one for each feature, especially since the descriptions
of some features consist of only a few words.

We designed the solution as follows:
• We accept and embrace the fact that the generated docu-
ment has the same structure as the feature tree, traversed

in pre-order. This is a certain limitation, but it will keep the
generator simple, and it makes a great standard.

• We analyze the nature of the partial configurations and de-
velop appropriate capabilities of the composer.

• We store short text snippets in the feature model.
• We find it convenient to use Markdown [7] as mark-up and
let Pandoc [11] transformMarkdown into properly formatted
Microsoft Word® documents.

Since release 3.5, FeatureIDE has supported feature attributes.
These are additional properties of features, and they are stored
in the feature model. We use attributes to store text snippets for
features described by a short text, or to store the reference to a file
that contains a longer text. Currently, our model contains 330 text
snippets, 180 thereof in attributes, 150 in files. All text snippets are
written in Markdown.

Selecting a program in the program subtree results in a partial
configuration and leaves many features undefined, e.g., possible
recipients, the size of the company and term variants. Our composer
must process these undefined features. But how?We analyzed these
partial configurations, saw that open decisions where always within
small subtrees of the feature tree, and identified three types of open
decisions that we called A, B and C:

A. Features of a subtree which need to be itemized.
B. Children of one feature define a range whose maximum

and/or minimum value need to be generated.
C. Permissible combinations of features need to be identified

and from these combinations a text needs to be composed.
Our composer basically concatenates the text snippets attached

to selected features in the pre-order of the feature model, but also
implements type A, B and C. That is, during document generation
the composer resolves the decisions left open in the partial config-
uration. This includes repeatedly calling FeatureIDE and the SAT
solver to determine permissible combinations of features. Our short

The Benefits of a Feature Model in Banking SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

paper [5] elaborates on type A, B and C, and how the composer
pieces together documents from partial configurations.

In a nutshell, the generator composes one Markdown document
from the partial configuration and the text snippets. Pandoc trans-
forms the Markdown document to a Microsoft Word® document.
We provide a Word® docx template with KfW corporate design
elements for Pandoc. Figure 6 shows the document generator ar-
chitecture.

modeler

Eclipse with
FeatureIDE

R

SAT4JFeatureIDE

R

feature model,
text snippets

configurationcomposer

markdown
document

pandoc

docx
template

program
information sheet

domain expert

R

program

R

document generator

R

Figure 6: The document generator architecture (notation:
FMC block diagram [8])

In order to establish YAP and the document generator as the KfW
program standardization toolset, we have integrated the document
generator in YAP. Each program tile provides a button Merkblatt
(German for information sheet), which, when clicked, calls the
document generator and passes the program number as argument.
So domain experts and other colleagues can use the document
generator whenever they want.

5.2 Standardization Toolset
By comparing the original program information sheets with the gen-
erated ones, we discovered that some original information sheets
contain statements for which our feature model does not contain
any features. Our team and the domain experts always work on
these cases: Is a feature missing or is the statement superfluous? If
a feature is missing, we will add it to the model, add its description,
and generate the text. If the statement is superfluous, we will ask
them to remove it from the information sheet, and thus, from the
program. It can be tedious to remove long-established features. But
we keep working on it, because it reduces complexity.

Newly developed retail programs should “follow the standard”.
Domain experts ask us, what “the standard” is. Instead of providing
rules or guidelines, we answer: YAP and the document generator
define the standard.

Using the document generator, we discover exceptions. Here is an
example: In most KfW retail programs, the possible combinations
of loan term, grace period and interest rate period are permitted
for all loans that can be derived from this program. However, some
programs exhibit an extra dependency: the permitted combinations

differ with respect to the intended purpose. In these cases, the pro-
gram information sheet must itemize the permitted combinations of
loan term, grace period, interest rate period and intended purpose
(4-feature-combination). In all other programs, the itemization does
not include the intended purpose (3-feature-combination).

The document generator processes each configuration identi-
cally. It does not print a 4-feature-combination for some programs
and a 3-feature-combination for others. We consider the 4-feature-
combination to be an exception that should be abolished. We have
proposed to remove the critical purpose from the affected programs,
and to design a new program that promotes this purpose.

When a ministry orders a new retail program, we model this
program experimentally in our feature model. Usually, the new pro-
gram belongs to an existing promotional goal or program family,
so we insert the new program as a descendant. If any ancestors of
the new program feature appear in antecedents of cross-tree con-
straints, these constraints will define the standard for the new pro-
gram.We add missing cross-tree constraints until they are complete.
Then, we publish the feature model containing the new program
as a separate instance of YAP.

We suggest that existing features be used, new features only be
introduced if unavoidable, and only existing dependencies be used.
Until now the difficulty was that neither KfW domain experts nor
ministries knew all existing properties, values and dependencies.
Now YAP and the document generator make them visible.

Afterwards, we generate the program information sheet. The
document generator and the re-usable text snippets render the de-
scription of the new program and save domain experts from writing
(or cloning) standard paragraphs. We add missing text snippets of
new features such as the intended purpose. The document genera-
tor ensures that each information sheet describes common features
in the exact same words, and that every information sheet has the
same layout, structure, font, wording and style. If you generate, you
will not need guidelines and you will not have to ensure that they
are followed.

As a result, domain experts can develop new programs that are
consistent and conform to the existing portfolio even if they don’t
know the existing properties and values. This is how YAP and the
document generator prevent the growth of complexity.

6 CONCLUSIONS AND FUTUREWORK
Our feature model helps to standardize the programs, to reduce
manual activity and to avoid redundancy. It will excel in applica-
tions that need dynamic and flawless configuration of products.
Our ideas and plans include

• to shorten time-to-market for new products by giving min-
istries access to the feature model

• to improve KfW’s program information by generating reader-
specific documentation

• to improve access to KfW’s programs by offering product
configurators

• to support KfW’s interest rates pricing and publishing sys-
tem by providing price-setting features

• to support checking loan applications
• to scope the product line

The following subsections give some details.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Claudia Fritsch, Richard Abt, and Burkhardt Renz

6.1 Giving Ministries Access to Feature Model
A product line can only be efficiently maintained if customers and
orderers are satisfied with standard features and dependencies. In
our case, the requirements imposed by the ministries are crucial. In
a next step we want to offer ministries who request KfW programs
to use YAP and the document generator. We will try to convince
them to accept the standard and to work with us to shorten time-
to-market and to reduce development costs.

6.2 Generating Reader-Specific Documentation
Program information sheets are multi-purpose documents that have
to satisfy many readers: bank advisors, potential borrowers, loan
recipients and ministries. On the one hand, this all-in-one solution
minimizes the number of manually maintained documents. On the
other hand, it is suboptimal for any reader.

Firstly, if we generate documents, we can generate reader-specific
documents for each program with little more effort from the same
source, our feature model: A program description including expert
knowledge for bank advisors, a one-page showcase for our web site,
an individual loan information sheet from a complete configuration
for loan recipients and a program definition for ministries. The
documents will be consistent and uniform nonetheless.

Secondly, we can generate product descriptions from complete
configurations. This way, customers will receive mass-customized
retail loan documents that describe the loan they have configured
even before they go to their bank and apply for a loan.

6.3 Providing New Access Paths to KfW Loans
6.3.1 Finding a KfW Loan – Status Quo. Because KfW loans are
particularly favorable, they are very competitive and in demand.
But portfolio complexity challenges customers, too.

If you are looking for a KfW loan, you may browse the KfW web
site, use the program finder, and answer a few questions. The result
is a list of 3 - 5 links to possible programs. Following each link, you
will find a short, structured web page on each program with a link
to the program information sheet. Then you will have to decide
which program will suit you best. This will be difficult, because
you have to read and understand the promotional directives in the
information sheets and their appendices.

Or you go to your bank. Most of our loans are on-lent loans,
brokered by credit unions, savings banks and private banks. Expert
bank advisors for promotional loans know KfW programs very
well and help their customers.

In order to find the program that will suit you best and to get an
offer, you or your bank advisor need expert knowledge.

6.3.2 Suggesting a New Way. Each complete feature configuration
defines a KfW loan. Until now, the configurator YAP is available
within KfW only. We plan to publish YAP so that anybody can
configure KfW loans. The advantages of YAP over the existing
program finder are:

• You can choose the loan features you want in any order that
you like. Start with the type of recipient you are, the type of
investment you make or the amount of money you need.

• You can’t make mistakes in the decision process, thanks to
the underlying propagation mechanism.

• You can see the interest rate you will have to pay.
• You will always get a result – your best option – instead of
several possibilities.

After having configured your loan, you can generate your indi-
vidual loan information sheet on the spot. It will describe exactly
the loan features you have selected. Furthermore, we plan to gener-
ate the exact list of data and documents you need to bring to your
bank for a loan application.

6.3.3 Integrating KfW Programs in Promotion Portals and Manu-
facturer Web Sites. Today, private individuals do not have to go to
their bank to find a favorable loan. They rather browse the internet
where

• independent portals broker loans
• manufacturers of goods eligible for promotion (heatings,
fuel cells, windows, etc.) broker KfW loans and grants as a
powerful sales argument.

We have implemented a programming interface to our feature
model: The KfW open API provides access to the RESTful interface
of the Feature Model Service (see 4.2), so a third-party software
can browse programs or properties, make selections and configure
loans. At this time, KfW open API is still a prototype and only
available for registered beta users. One of the leading international
manufacturers of heating systems uses the KfW open API to check
if a potential customer is eligible for a KfW grant. As soon as KfW
open API fulfills all regulatory demands, we are going to make it
available for everybody.

6.4 Scoping the Product Line
KfW retail programs have always been well-managed. Now we
want to manage the portfolio, the properties and the dependencies.
The organization needs to move towards modeling the portfolio
rather than developing single programs. How can we do that?

As mentioned before, the document generator uncovers all the
specialties of a retail program. We have observed that the complex-
ity or extraordinariness of an information sheet correlates with the
complexity of the software required to process loans derived from
this program. The document generator also detects if a program
deviates just too much from the others so that the information sheet
cannot be generated in full with reasonable effort. From a product
line point of view, such a program is out of scope.

The feature model and the document generator provide a means
to demonstrate the deviations and to discuss them among domain
experts, with the ministries and with the IT department. Implemen-
tation costs become obvious as soon as retail program design starts,
long before software solutions are developed. The organization can
make an informed decision whether new properties or dependen-
cies should be included in the portfolio or not. This is the first step
of the transition from single program development to product line
development.

REFERENCES
[1] Sven Apel, Christian Kästner, and Jörg Liebig. 2020. FeatureHouse: Language-

Independent, Automated Software Composition. Retrieved March 5, 2020 from
http://www.fosd.net/fh

[2] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems

http://www.fosd.net/fh

The Benefits of a Feature Model in Banking SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Software Domain. IEEE Trans. Software Eng. 39, 12 (2013), 1611–1640. https:
//doi.org/10.1109/TSE.2013.34

[3] Feature IDE development team. 2020. FeatureIDE - An extensible framework
for feature-oriented software development. Retrieved March 5, 2020 from https:
//featureide.github.io

[4] Sascha El-Sharkawy, Saura Jyoti Dhar, Adam Krafczyk, Slawomir Duszynski,
Tobias Beichter, and Klaus Schmid. 2018. Reverse engineering variability in an
industrial product line: observations and lessons learned. In Proceeedings of the
22nd International Systems and Software Product Line Conference - Volume 1, SPLC
2018, Gothenburg, Sweden, September 10-14, 2018, Thorsten Berger, Paulo Borba,
Goetz Botterweck, Tomi Männistö, David Benavides, Sarah Nadi, Timo Kehrer,
Rick Rabiser, Christoph Elsner, and Mukelabai Mukelabai (Eds.). ACM, 215–225.
https://doi.org/10.1145/3233027.3233047

[5] Claudia Fritsch, Richard Abt, and Burkhardt Renz. 2020. Generating Documents
from Partial Configurations. Retrieved September 7, 2020 from https://esb-
dev.github.io/mat/KfW_DocGen_abc.pdf

[6] Claudia Fritsch and Ralf Hahn. 2004. Product Line Potential Analysis. In Software
Product Lines, Third International Conference, SPLC 2004, Boston, MA, USA, August
30-September 2, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 3154),
Robert L. Nord (Ed.). Springer, 228–237. https://doi.org/10.1007/978-3-540-28630-
1_14

[7] JohnGruber. 2020.Markdown. RetrievedMarch 5, 2020 fromhttps://daringfireball.
net/projects/markdown/

[8] Andreas Knöpfel, Bernhard Gröne, and Peter Tabeling. 2006. Fundamental Mod-
eling Concepts: Effective Communication of IT Systems. Wiley, Chichester, UK.

[9] Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christopher
Sontag, Thomas Thüm, Thomas Leich, and Gunter Saake. 2017. FeatureIDE: Em-
powering Third-Party Developers. In Proceedings of the 21st International Systems
and Software Product Line Conference, SPLC 2017, Volume B, Sevilla, Spain, Sep-
tember 25-29, 2017, Maurice H. ter Beek, Walter Cazzola, Oscar Díaz, Marcello La
Rosa, Roberto E. Lopez-Herrejon, Thomas Thüm, Javier Troya, Antonio Ruiz
Cortés, and David Benavides (Eds.). ACM, 42–45. https://doi.org/10.1145/3109729.
3109751

[10] Sebastian Krieter, Thomas Thüm, Sandro Schulze, Reimar Schröter, and Gunter
Saake. 2018. Propagating configuration decisions with modal implication
graphs. In Proceedings of the 40th International Conference on Software Engi-
neering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 898–909.
https://doi.org/10.1145/3180155.3180159

[11] John MacFarlane. 2019. Pandoc. Retrieved March 5, 2020 from https://pandoc.org
[12] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,

and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE. Springer.
https://doi.org/10.1007/978-3-319-61443-4

https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/TSE.2013.34
https://featureide.github.io
https://featureide.github.io
https://doi.org/10.1145/3233027.3233047
https://esb-dev.github.io/mat/KfW_DocGen_abc.pdf
https://esb-dev.github.io/mat/KfW_DocGen_abc.pdf
https://doi.org/10.1007/978-3-540-28630-1_14
https://doi.org/10.1007/978-3-540-28630-1_14
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://doi.org/10.1145/3109729.3109751
https://doi.org/10.1145/3109729.3109751
https://doi.org/10.1145/3180155.3180159
https://pandoc.org
https://doi.org/10.1007/978-3-319-61443-4

	Abstract
	1 Introduction
	1.1 KfW
	1.2 KfW Retail Programs and Loans
	1.3 KfW Loan Life Cycle
	1.4 Complexity of the Portfolio

	2 Motivation
	2.1 Who Are We?
	2.2 Our Goals
	2.3 A First Attempt

	3 The Feature Model and its Characteristics
	3.1 Designing the Feature Tree
	3.2 Modeling Dependencies
	3.3 Creating the Program Subtree
	3.4 Defining Cross-Tree Constraints
	3.5 Complete Configurations Define Loans, Partial Configurations Define Programs

	4 The Configurator as an Analysis Tool
	4.1 Analyzing the Portfolio
	4.2 YAP: A Client-Server Product Configurator

	5 The Feature Model as a Vehicle for Standardization
	5.1 Generating Program Information Sheets
	5.2 Standardization Toolset

	6 Conclusions and Future Work
	6.1 Giving Ministries Access to Feature Model
	6.2 Generating Reader-Specific Documentation
	6.3 Providing New Access Paths to KfW Loans
	6.4 Scoping the Product Line

	References

