
Four Mechanisms for Adaptable Systems
A Meta-Level Approach to Building a Software Product

Line

Claudia Fritsch1 and Burkhardt Renz2

1 Robert Bosch GmbH, Corporate Research and Development, P.O. Box 94 03 50,
D-60461 Frankfurt, Germany

Claudia.Fritsch@de.bosch.com
2 University of Applied Sciences Gießen-Friedberg, Department MNI, Wiesenstr. 14,

D-35390 Gießen, Germany
Burkhardt.Renz@mni.fh-giessen.de

Abstract. For more than ten years we have developed and maintained
a software product line of legal expert systems. They share certain func-
tionality, such as interaction with the user by means of a graphical in-
terface, capturing data, storing information in a database, and printing
documents. They differ mainly in two points: Domain descriptions and
technical infrastructure.
When we designed the architecture for this software product line, we
focused on two requirements in particular: Domain experts should be
involved in development, but should not have to learn a general-purpose
programming language. Changes in domain descriptions should leave
technical code untouched – and vice versa.
Using a meta-level architecture we achieved a sound decoupling: Domain
descriptions are kept in the meta level. Appropriate engines included in
the base level act according to these descriptions.
We present the four meta-level mechanisms which we have developed
for the design of this software product line. They separate domain de-
scriptions from technical code in the following areas: data reference and
access, input and output control, application and domain logic, and user
command control.

Introduction

The software product line we are talking about is made by a German publishing
house specialized in international civil law and law of civil status. The following
is an account of the software developed at this company over a 10 year period.
Today, the company continues successfully to develop this product line.

Chapter 1 introduces the product line, chapter 2 explains the architecture,
chapters 3 – 6 contain the four mechanisms, and chapter 7 gives a résumé.

br
Textfeld
R. L. Nord (Ed.): SPLC 2004, LNCS 3154, pp.51-72, 2004.
(c) Springer-Verlag Berlin Heidelberg 2004

1 A Product Line of Legal Expert Systems

The products in this software product line are made for registrars and similar
offices. The product line covers the German and Austrian market. Variants reflect
national and regional legislation and practice.

The software processes legal events, such as the registration of births or mar-
riages. Inputs for each legal event are personal data which are processed accord-
ing to complex legal rules. Output of each is a set of documents. Customers
demand software guaranteed to be legally correct, i.e., observing the Law on
Personal Status ([15]).

1.1 Scope

German and Austrian law of civil status have the same structure (as distinct
from the Anglo-Saxon juridical system) but differ in many details. Austrian reg-
istrars additionally administer citizenship – an event which does not belong to
the duty of German registrars. In Germany, Land law (state law) adds specific
rules to federal law. This demands variants of the software. The government has
assigned special tasks to some registry offices, requiring more variants. While
these variations result from differences in the domain, other reasons for variabil-
ity stem from technology.

The products have to support different technologies demanded by the cus-
tomers. Registry offices are equipped with different hard- and software: Some
have networks, others do not. Some use relational database management systems
such as Oracle or MS SQL Server, others ask for a low-cost (or even no-cost)
database. We call combinations of these technologies platforms. The use of these
different platforms has consequences for the software. Nevertheless, the software
has to offer the same, required functionality on each platform.

Some products in this product line have been on the market for more than ten
years. Technology has been changing, accordingly the software has been subject
to change. Customers follow the technology change. While some of them do it
fast, the financial situation of others does not allow up-to-date technology. E.g.,
the switch to 32-Bit-Windows spread over more than 5 years. This is another
reason why the product line has to support different platforms at the same time.
The products’ life cycles overlap.

Changes in the domain are initiated by changes of the law – or development
of society reflected in law. They occur independently of changes in technology.
Technical changes and domain-specific changes have to be made at the same
time, but without interference.

1.2 Basic Product for German Registrars

To illustrate the characteristics of the domain we give an overview of the product
for German registrars:

A German registry office is divided into 5 departments. The work in each de-
partment is divided into 4 – 12 categories. Examples of departments are births,

deaths, and marriages. Examples of categories in the birth department are reg-
istration of a birth, legitimation of a child, and adoption. Altogether there are
about 35 categories. In each category, legal events are processed. An example of
a legal event is the registration of the birth of one child.

A legal event may come in many varieties, depending on the family back-
ground and number of people involved. The varieties of the events rank from
simple standard to highly complex involving international law. So, even within
the same category, the amount of data required for one legal event differs.

While many legal events are processed completely within an hour, others
take weeks to be finalized. For example, the registrar may enter the data of a
marriage up to 6 months in advance.

When a legal event has been processed, the output is a set of documents.
Forms, required by law, must be filled out. Examples of documents are personal
registration certificates, register entries, decrees, and notifications to other of-
fices. The data are laid out on the documents in different combinations, even in
different wording.

The output is strictly regulated by law ([14], [15]), but sometimes rules are
incomplete or conflicting. These cases are left to the registrar’s discretion. The
software, although an expert system, must leave final decisions to the registrar.

1.3 Domain Characteristics

The following characteristics are the key results of domain analysis.

– The legal events have the following properties in common
• a varying amount of data is required, depending on the background and

number of people involved
• the required data and the documents which have to be printed follow cer-

tain patterns, depending on circumstances such as nationality or marital
status

• a registrar may work at one legal event for a long time
• data may be incomplete during processing
• data may not be changed after registration

– The law of civil status
• may change several times a year and time between proclamation and

effective date is short
• can be mapped to processing rules to a high degree, but these rules may

not limit the registrar’s authority
• is incorporated in forms, certificates, and a flow of work; registrars fill

out forms and domain experts “think” in forms, too
– The registrars and personnel in registry offices

• may either be experts in the field or have basic knowledge
• have different computer skills
• work in about 6000 German registry offices equipped with various plat-

forms

1.4 Requirements

From the domain characteristics we derive requirements our products have to
fulfill. These requirements lead to the four mechanisms we are going to describe.

– Usability: The software should
• capture domain expertise and map it to processing rules
• adapt to working methods in the office (not vice versa)
• reflect the registrars’ way of thinking, the work process, and the division

of labor in the offices
• support many varieties of a legal event, depending on the current data
• guarantee legal correctness

– Maintainability: The developers have to
• adapt the software to changes of regulations several times a year
• implement and test changes quickly
• adapt the software to new technology without affecting the captured

domain expertise and vice versa
– Platform independence: The software should

• run on different operating systems
• offer several databases
• offer different user interfaces (GUIs)

2 Architecture

The products in our product line share a common architecture. We outline this
architecture, focusing on the points which give reasons for the four mechanisms.

2.1 Architectural Decisions

1. Organize the processing of a legal event in a series of masks. Users
and domain experts are used to work with forms. Forms guide through the
processing of a legal event. The software should support this working method.
Our basic decision was therefore to

– collect the data needed to process a legal event in a series of masks (data
entry screens) that act as a master form

– use this data to print all documents (certificates, register entries, notifica-
tions, etc.)

– react on input immediately, guiding the user through the event.

This decision implies:

– The series of masks depends highly on the current data of the concrete event.
The data affects the number and order of masks presented and the control
of the input on the masks.

– The masks contain domain knowledge, both legal regulations and common
practice.

With this, the domain logic and the presentation of the application (in the
form of series of masks) would be coupled tightly if we implemented the masks
in a general purpose language using the infrastructure of a specific GUI class
library. Instead:

2. Describe masks in a domain-specific language. We designed a domain-
specific language in which domain experts describe layout and behavior of masks,
in particular

– input fields
– constraints on these fields
– control of input according to domain requirements

This language does not depend on any GUI class library, rather it yields a new
level of abstraction. We regard this separating of the domain knowledge from
the technical infrastructure as decoupling by abstraction. Masks are described
without reference to a specific implementation, but are translatable into a rep-
resentation for a certain GUI.

However, this second step in the development of the architecture has a drastic
consequence: Naming data items and accessing their values have to be basic
elements of the language.

3. Reference data by symbolic names. We abstract the actual storage
of data to a data model where items are referenced by symbolic names (see
mechanism #1). It turns out that this mechanism is the core of our architecture.
The data items referenced by symbolic names form the repository that glues
together

– the controlling of the masks
– the generation of documents and
– the control flow of the application

As a further result, data reference is database-independent.
These ideas lead to the following principles, which we will use over and over

again:

A meta-level architecture separates domain descriptions from tech-
nical code. Prerequisite is to find the properties of the processing of a legal
event, both the content and the workflow. These properties are not part of the
code but allow us to describe the legal event at the meta level. The base level
executes these domain descriptions by means of interpreters and data-controlled
engines, written in general purpose languages (C, C++, Java). This permits us
to move to another technology, e.g., a new database system or another operating
system, without touching the expert knowledge.

Domain expertise is captured in executable descriptions. All expert
knowledge is contained in domain descriptions, namely masks, documents, do-
main logic and the data model. The captured knowledge is highly complex and
a most valuable core asset. Each description is in only one place. Domain de-
scriptions are strictly separated from technical code. This allows us to embrace
changes in the domain without touching code.

Fig. 1. Overview of the architecture (FMC notation).

2.2 Overview of the Architecture

Figure 1 shows the high level, compositional structure of our product line archi-
tecture. As notation we use Fundamental Modeling Concepts (FMC) developed
by Siegfried Wendt and described in [10] and [9].

The components needed at runtime are shown on the left, development on the
right. The behavior of the system is described on the specification level. These
domain descriptions are transformed into the meta-level objects which control
the components of the base level at runtime.

The Application Controller starts the application and passes control to the
User Command Controller. The User Command Controller reacts to user commands
invoked by the application menu according to the State Table which describes
the dynamic behavior of the application. When the user chooses a category and
opens a legal event for processing, the Event Controller reads from the Category
Rules how to handle this legal event.

The Event Controller passes control to the Mask Controller when the user opens
a mask to enter data. The Mask Controller dynamically generates presentation
objects from the Mask Objects Archives and shows them on the screen. It uses
data references to establish connection between the input fields and the Event
Data Object. (The same mechanism is used for dialogs but neither shown in the
figure nor discussed in this paper.)

When the user issues the command to print documents, the Application Con-
troller passes control to the Document Formatter.

The Mask Controller and the Document Formatter need the data of the current
legal event. Whenever data access is necessary, they demand this service from
the Data Access Module, or, more specifically, the Event Data Object.

During development, domain experts specify Mask Descriptions and Docu-
ment Descriptions in domain-specific languages. The compilers magic and formic
translate these descriptions into Mask Objects Archives and Document Three-
Address Codes, respectively.

The rules which tell the Event Controller what to do are specified in Category
Descriptions. The preprocessor inic translates them into Category Rules.

Software developers specify the Data Definition of the database. The compiler
cdic translates it into a Data Dictionary and a Data Mapping. Using the Data
Dictionary, magic, formic, and inic verify the data references in the descriptions.
The Data Mapping, read by the Event Data Object, provides information on
tables, primary keys, and integrity constraints.

2.3 Remarks

The meta-level architectural pattern is discussed in, e.g., [11] and [18]. These
descriptions focus on meta object-models which determine the creation and be-
havior of base-level objects at runtime by a reflection mechanism.

In our architecture we use four mechanisms to provide and use metadata:

– description of data based on a specific type of relational data model
– declarative and procedural domain-specific languages
– meta objects and rules given by logical expressions
– description of user command control by a specific type of statechart

Both the domain knowledge and its transformation into workflows should
not be hard-wired into the code. We tried to find the most convenient way.
The domain experts describe all layers of the application on the specification
level – the data, the input and output, and the control – and these descriptions
are transformed to control the base level. This solution is generic by means of
mask and document generators. Their application, however, is very specific to
the domain.

Interactive systems are often described by a layer architecture. Basically
three conceptual layers are distinguished: the presentation, the domain logic,
and the persistence layer, e.g., in [3].

Our architecture has layers in two dimensions, namely levels and respon-
sibilities: in both the base level and the meta level we separate presentation,

domain logic, and persistence. The most interesting aspects of the meta-level
architecture with respect to layering are:

– The layers in the meta level are tightly coupled, supporting the required
domain-specific dependencies. The construction of the meta level follows the
way domain experts describe the processing of legal events. For this reason
we avoid indirection wherever possible.

– The layers in the base level are extremely decoupled. Engines in each base-
level layer interpret the meta-level descriptions at runtime. These engines do
not hard-wire domain-specific logic but process the meta-level descriptions.
The architecture provides access points to the layers; the engines do not
depend on each other in any other way. Consequently the base-level engines
can operate in different combinations in the various products of the product
line.

3 Mechanism #1: Data Reference and Access by
Symbolic Names

References to data items are needed in the meta level to specify data input,
document contents, and workflow. We want to reference and access data items
by names. We want to ignore where data is stored, and how:

3.1 Solution

Within an event, a symbolic name uniquely identifies a data item. The
symbolic name determines the access path to the data in the database. At
runtime, a dynamic data object serves as a container for this data and
is responsible for its persistence.

Data model In order to define a
hbrt
vid	 enr	 date	 	 ...
1234	 317	 03.03.2003

Legal event marriage (root entity)

hbvp
vid	 ptype	 name	 	 anzve	 ...
1234	 e	 Schneider	 0

1234	 s	 Bergmann 	 1

Data of fiancée and fiancé

hbve
vid	 ptype	 venr	 partner	 	 ...
1234	 s	 1	 Olthoff	

Data of previous marriagesre
fe

re
nc

es

Fig. 2. A part of the data model illus-
trating the principle of relationships.

naming convention for data items we
need a convenient data model. In our
application each legal event is assigned
a unique root entity whose primary
key is called Event Identifier (vid). We
can then organize the event data in
entities so that each entity has a 1:1
relationship or a cascading 1:n rela-
tionship to the root entity. Each en-
tity type has a compound primary key
whose first item references the vid.

Figure 2 shows the principle in an
example: Root table hbrt contains one

row for the marriage identified by vid 1234. In table hbvp there is one row for
fiancé Schneider and one row for fiancée Bergmann, distinguished by ptype e and

s, respectively. anzve holds the number of previous marriages. Mrs. Bergmann,
now divorced, was previously married to Mr. Olthoff, while Mr. Schneider is
unmarried. So table hbve has one entry. This row is linked to hbrt by the vid and
to hbvp by the vid and ptype s.3

Data reference A symbolic name consists of the row identifier, i.e., the name
of the entity type and the key information, and the field identifier, i.e., the name
of the attribute. A dot separates row identifier and field identifier. Using the
example of figure 2, the symbolic name
hbve[s][1].partner
references Olthoff, name of the previous spouse of Mrs. Bergmann. It corre-
sponds conceptually to the SQL statement
select partner from hbve where vid=? and ptype=’s’ and venr=1

Data access The data of one legal event is encapsulated in an Event Data
Object (edo). Assisted by the Data Mapping, edo translates the symbolic name
into a data access path. To continue with our example, edo reads in the Data
Mapping that the compound primary key of hbve is composed of the attributes
vid, ptype, and venr. The vid is the identifying attribute of the edo. So edo has
all necessary key information to access the data of hbve[s][1].partner.

The edo holds the data of an event in memory. It offers two strategies:
– Load all data rows identified by the same vid. This gives a full in-memory

copy of the data belonging to this legal event.
– Load only those data rows requested by the application (lazy load). At each

request edo checks if the requested data is already in memory, i.e., contained
in the current edo.

Which strategy we choose depends on the infrastructure. It is even possible
to mix both strategies, i.e., load the core data on creation of the edo, and load
remaining data as requested by the application.

Concurrency control The data values in the Event Data Object i.e., in mem-
ory, have to be synchronized to the database. The Event Data Object intercepts
all database access and keeps a log of the state of the data in memory. Therefore,
the Event Data Object has to perform long duration transactions [16].

As databases do not support long transactions, the Data Access Module uses a
check-out/check-in mechanism. On creation of an edo the current user is recorded
in the corresponding root entity, and access of other users is denied.4

3.2 Implementation

Figure 3 shows the implementation of edo: The class Event Data Object (edo)
is a container of Row Data Objects (rdos). Each object of class edo is uniquely
identified by the vid given on construction of the edo. edo’s methods to retrieve
and store the values in the database delegate this responsibility to the rdos, edo’s
components.
3 Please don’t be troubled by cryptic abbreviations such as hbvp. They are reasonable

abbreviations for Germans. Our domain experts love them.
4 This is in no way a restriction. It meets the working procedure in the offices.

Each object of class Row Data Object stores one row of data. It has an at-
tribute rdoName whose value is the row identifier. An rdoName is unique within
the rdos contained in one edo.

Each rdo consists of a Row Data
edo Event Data Object

vid:long

SetField()
GetField()
Save()

rdoName: string

fldName: string

state: rdoState

SetField()
GetField()
Save()

rdo Row Data Object

fldType: sqlType
fldLength: int
fldOffset: int

SetField()
GetField()
GetFieldType()
GetFieldLength()

fld Field Descriptor

rdb Row Data Buffer

buffer: byte[]
length: int

1

1

1

1

1

1

references field data offset
 in rdb

Qualified Compositons:
Each edo contains 1..* rdos each
uniquely identified by rdoName.
Each rdo contains 1..* flds each
uniquely identified by fldName.

Fig. 3. Code structure of the Event Data
Object (UML notation).

Buffer and a list of Field Descriptors.
The Row Data Buffer stores the data.
It is allocated dynamically at runtime.
It is structured by the Field Descrip-
tors. Each Field Descriptor contains the
meta information of the correspond-
ing database field: name, type, and
length. This meta information is re-
trieved from the system catalog of the
database at runtime. The Field De-
scriptor is used to make all necessary
type conversions and to inform the
application about the type of a data
item in the database.

The rdo keeps track of its state
with respect to the database in its at-
tribute rdoState. The state of an rdo
is characterized by the statechart in
figure 4.

When created, the rdo is initial-

PERSISTENT TRANSIENT

UPDATE INSERT

Save
GetField GetField

create
[found in
database]

create
[not found in
database]

SetField

Save Save

GetField
SetField

GetField
SetField

SetField

Fig. 4. Data Persistency and Synchro-
nization (UML statechart notation).

ized from the database. If the corre-
sponding row exists in the database,
the data are loaded and the state of
the object is PERSISTENT. Otherwise,
it is TRANSIENT.

The methods of the rdo manipu-
late the data in the Row Data Buffer
and change the state of the rdo ac-
cordingly. The methods SetField() and
Save() change the state of the rdo to
ensure the correspondence to the state
of the data in the database.

The method Save() chooses the ap-
propriate action on the database ac-
cording to the state of the rdo. In state UPDATE Save() performs an update of
the data row. In state INSERT it inserts a new row in the table. The primary key
of the new row is given by the rdoName. In state PERSISTENT or TRANSIENT,
nothing needs to be done.

3.3 Discussion

Data model and data reference are simple: The data model consists of 1:1 and
1:n relationships only. It is mapped directly to the data definition of relational
databases. Software developers and domain experts can easily keep both the
data model and data reference in mind.

Data reference is database system independent and programming language in-
dependent: The symbolic name is a character string. It introduces an indirection
between the data reference and data access. Data reference assigns a meaning
to a database field – it establishes the necessary coupling in the meta level. The
symbolic name may be translated to any database access technique.

Changes in the data definition affect the users of the data (Mask Descrip-
tions and Document Descriptions), while the data access mechanism remains un-
changed.

Data access is generic and dynamic: edo provides a data access mechanism
and a data container. But edo does not know which data to access. This infor-
mation is contained only in the meta level: the symbolic names. edo resolves
symbolic names at runtime.

Data access is portable: We had few problems with incompatibilities of SQL-
databases, because we only use a small subset of SQL. We were even able to
implement this SQL subset on a navigating database. A simple data model has
led to database system independence.

The basic idea of the Event Data Object can easily be extended to a check-
out/check-in mechanism with a more sophisticated data mapping and naming
convention. An option is to use an XML data model and a subset of XPath as
naming convention to identify individual data items or even groups of them.

3.4 Related Mechanisms

Mechanism #1 is the basis for the other three mechanisms. They use the symbolic
names.

3.5 Remarks

The concept of the Event Data Object and the use of a statechart to control the
state of the rdos was inspired by [12, Chap. 20].

The patterns in [3, Chap. 11 and 13] are closely related to our approach:
the Unit of Work, Metadata Mapping, and Repository patterns share concepts
with the Event Data Object. However, we use the Event Data Object to store
and retrieve data values whose access paths are given dynamically – by symbolic
names, in fact. So the Event Data Object is more restricted in terms of the data
model, but within that more generic.

The disconnected data set of ADO.NET (see e.g. [17]) has many similarities
to the Event Data Object. We already mentioned that an XPath-based naming
convention could be used instead of ours.

4 Mechanism #2: Input and Output Control by
Domain-Specific Descriptions

The data necessary to process a legal event is collected in a series of masks. The
Mask Controller reacts on input immediately and guides the user through the
event depending on the specific situation.

The data is then used to print all required documents. Usually, one event
results in 5 – 20 documents, each comprising 1 – 4 pages.

4.1 Solution

For each event, platform-independent mask and document descriptions
define which data is entered and how forms are filled out. They are writ-
ten in domain-specific languages. At runtime, the compiled descriptions
control the layout and behavior of masks and the content and formatting
of documents.

Mask and document descriptions are written in languages which we designed
according to the needs of the domain. Certain functions of the languages provide
the domain-specific features, notably

– properties of fields on masks and documents
– processing of input
– formatting of output

We continue describing solution and implementation for masks and docu-
ments separately.

4.2 Masks

Concept A Mask Description defines static structure and dynamic behavior:

– The layout of the mask is defined by placing labels and input fields according
to a column raster5

– Each input field is assigned the symbolic name of the data item which stores
the input

– Input is assisted in certain fields by domain-specific functions, such as date
functions, auto-completion, and calculations

– Actions are triggered by user interaction events (enter or quit the mask,
enter or quit a field, enter a certain character in a field). Actions are domain-
specific and may depend on parameters, data in input fields, or data of the
current event
• (pre-)fill fields with data
• disable/enable fields
• check logical state of input

5 A template defining the layout of the masks was developed by a UI designer.

Fig. 5. The PAC architecture of the Mask Controller, exemplified with MFC (UML
notation).

Implementation The compiler magic translates the platform-independent Mask
Descriptions into the platform-dependent Mask Objects Archives. E.g., for MS
Windows these are serialized C++ objects. At runtime, the Mask Controller uses
the Mask Objects Archives to control the mask.

The Mask Controller shown in figure 5 is designed according to the Presenta-
tion Abstraction Control (PAC) architecture ([11]). The Presentation manages
the screen, intercepts arriving messages, and routes these to the Control. The
Abstraction maintains the data via the Event Data Object. Moreover, the Ab-
straction keeps all meta-level information to provide the intelligence needed to
handle user interactions which require executing functions, disabling fields, and
so on. The Control – the mediator between Presentation and Abstraction – rec-
ognizes the input, asks the Abstraction what to do, executes the appropriate
functions, passes the result back to the Presentation, and returns control to the
operating system. This behavior is not hard-wired into the code but determined
by the meta-level information contained in the Abstraction.

4.3 Documents

Concept A Document Description defines layout and content:

– A set of fields defines the layout of the document. Each field is defined by a
composition of rectangles, namely their positions on the document, length,
and height.

– A set of formatting rules defines the properties of each field. A field may
have several of about 20 properties, notably

if (hbeh.ehename != "") then
	 f1 = hbvp[$1].name + " heiratet am " + kdat(hbrt.date)
endif

Data reference

Function

String concatenation

Constant

with Parameter

Form field reference

Assignment

Data reference

Fig. 6. An example Document Description.

• generic properties, e.g., flush left/right
• domain-specific properties, e.g., the number of in-between lines

– Assignments define the content of each field.
• A field may contain static text or data items or any composition of these.
• The filling of fields may depend on parameters or on any data of the

current event. The language provides if-then-else and switch-case for
that.

For all this the language provides about 60 functions, implemented in the host
language. Figure 6 gives an idea of the language.

Implementation The compiler formic translates a Document Description into
platform-independent Document Three-Address Code (see figure 1). One instruc-
tion consists of a destination, two operands, and an operator.

At runtime, the Document Format-

Virtual
Machine

Event Data
Object

Database

Symbol
Table

Three-Address
Code

Document
3AC

Function
Pool

Formatted
Document

R

Document
Formatter

R

Fig. 7. Compositional structure of the
Document Formatter.

ter composes a document from the Doc-
ument Three-Address Code and the data
provided by the Event Data Object (fig-
ure 7). First the Document Formatter
loads the Three-Address Code and the
Symbol Table into memory. With the
help of the edo it replaces all data refer-
ences in the Symbol Table with the cur-
rent data values. Then the Virtual Ma-
chine processes the Three-Address Code.
Using the Function Pool it computes the
content of each field and stores it in
its destination in the Symbol Table. Af-
ter that, the Symbol Table contains all
information necessary to produce the
document, i.e., field contents and prop-
erties. Finally the Document Formatter

traverses the Symbol Table and produces a virtual document in memory. The
result is a completely processed, printable document.

4.4 Discussion

In each Mask Description and in each Document Description highly valuable do-
main expertise is captured and is readable, maintainable, and available for de-
velopers. Each description serves as specification, code, and documentation. It
is also guaranteed to be up-to-date, because this domain knowledge is captured
in no other place.

Mask Descriptions and Document Descriptions inherently expose a high de-
gree of correctness, because the languages guarantee consistency and prevent
programming errors. Testing is reduced to a black-box test of functionality.

Configuration management of masks and documents works ideally because
each item is contained in one file, and the files have ASCII format.

“Coding” of masks and documents comes close to specifying because the
languages are declarative. They are procedural only where necessary.

4.5 Related Mechanisms

Mechanism #1 Masks and documents rely on data reference and access pro-
vided by the Event Data Object (edo). Masks and documents only work properly
if the data references they use correspond to database fields.

Masks and documents can be parameterized. For example, the same Mask
Description can collect similar data for different people if a key attribute, such as
ptype, is parameter. Likewise, the same Document Description is used for different
people or different recipients.

Mechanism #3 Depending on the specific situation, the Event Controller de-
termines which masks to present for input and which documents to offer as
output.

Mechanism #4 The Mask Controller is part of a Chain of Responsibility ([4]):
Messages resulting from user interaction are routed to the Control component of
the Mask Controller. If the required reaction involves only the current input field,
it is handled by the Field Controler (FldCtrl); if several fields are involved the
Mask Controler (MskCtrl) is responsible; if another mask is involved the Event
Controller comes into play. Finally the User Command Controller is the top level
of this chain.

4.6 Remarks

We use the Presentation Abstraction Control architectural pattern [11] for the
design of the user interface. The dependencies on the platform are encapsu-
lated in the Presentation component. Abstraction and Control are platform-
independent.

The concepts used for the design of the Document Three-Address Code and
the implementation of formic come from [1] and [6].

Both compilers, magic and formic, are made with lex&yacc. Subroutines in
formic are implemented with the m4 macro processor.

5 Mechanism #3: Application and Domain Logic by a
Rule Engine

The handling of a legal event is organized as a workflow: it leads the user through
a series of masks. It results – after a juridical check – in printing several docu-
ments. The order of the masks and the selection of the documents depends on
the specific situation, i.e., on personal data.

While the structure of the workflow is common to all categories of legal
events, the concrete series of masks and documents within a category is do-
main knowledge. As such, it would be inappropriate to program the workflow in
technical code. Instead, we continue to keep the domain knowledge in the meta
level.

5.1 Solution

The workflow is controlled by properties. The properties describe the se-
ries of masks and documents and the conditions on which masks should be
presented and documents should be printed. These domain-specific prop-
erties are described in the meta level. At runtime, a rule engine controls
the workflow using these descriptions.

Each mask or document has the following properties: A name, parameters
which are substituted on invocation, and conditions which restrict its use de-
pending on the current data of a legal event.

The complete workflow of a category of legal events consists of a list of all
possible masks and documents and the conditions.6

The conditions – logical expressions – are the heart of the application and
domain logic. All constraints are grouped in classes of conditions. Each class
comprises all permissible states of interdependent data items. This is called a
logical class and the logical state within a class. Each condition can be referenced
by its logical class and logical state. To give an example: In processing a marriage,
the logical class “marital status” permits the logical states “single” or “divorced,
number of previous marriages > 0”, whereas ”married” is not allowed. The logical
expressions for the fiancée are

hbvp[s].famstand=="ledig" && hbvp[s].anzve==0
hbvp[s].famstand=="geschieden" && hbvp[s].anzve>0 7

6 Some masks or documents are repeated several times. The number of repetitions
depends on the current data, e.g., the number of children. Our descriptions allow to
specify repetition, but we omit the details in this paper.

7 famstand = marital status, ledig = single, anzve = number of previous marriages,
geschieden = divorced

5.2 Implementation

A Category Description contains the properties of a category, i.e., the series of
masks and documents and the conditions. Category Descriptions are files in ASCII
format, structured by sections and tags.8

The preprocessor inic translates a Category Description into a Category Rules
file. First, inic checks the syntax of data references against the Data Dictionary
(see figure 1) to guarantee the correctness of all data references. Then inic trans-
forms the conditions into Reverse-Polish Notation. This simplifies and speeds up
evaluation of the expressions at runtime.

At runtime, the Event Controller starts the processing of a legal event by
transforming the Category Rules into runtime objects. During input, the rule
engine evaluates the conditions to control the behavior of the workflow.

5.3 Discussion

Using the concept of logical classes and states we initially intended to reach a
more declarative way of describing the domain logic than we finally did. Inter-
national civil law brings up a complexity which is hard to capture in a com-
prehensive set of logical expressions. Domain experts often prefer to design the
processing of the legal event in terms of controlling the input on the masks.
Many regulations of the domain are formulated in this manner ([14]).

5.4 Related Mechanisms

Mechanism #1 Category Descriptions reference data items by their symbolic
name. The rule engine uses the edo to resolve these references and to access the
values of the data items.

Mechanism #2 The Event Controller uses the rule engine to determine the
series of masks and documents and gives control to the Mask Controller and the
Document Formatter. In particular, it provides the parameters and the reference
to the edo for the processing of masks and documents.

The Mask Descriptions refer to the Category Rules, which describe the in-
tegrity conditions of input values. At runtime the Mask Controller evaluates the
conditions by means of the rule engine.

6 Mechanism #4: User Command Control by a Finite
State Machine

So far we have described how data is entered on masks and is used to print
documents. The controlling of the application is still missing. For example, before
users can work at a legal event, they choose the category from the menu and
open either an existing event or set up a new one. After entering the data, they
issue a printing command.
8 The style of Windows ini-files. Our product line started long before XML was in-

vented.

6.1 Solution

Describe top level user commands as events which trigger actions and
move the application from one state to another. At runtime, a finite state
machine reacts to the events by executing the actions and transitions.9

Our statechart consists of sets of states, events, actions, return codes, and
two types of transitions. It is a variant of the statecharts introduced by Harel in
[5].

In a state an event may occur. State

H

CATEGORY
STATE

LEGAL EVENT
STATE

OpenEvent

open

OKAYCANCEL

Fig. 8. Part of the user command con-
trol statechart.

plus event define the action to be exe-
cuted. Each action issues a return code.
Action plus return code define the fol-
low-up state. Figure 8 gives an exam-
ple. Both in CATEGORY STATE and in
LEGAL EVENT STATE the user may open
a legal event for processing. If the user
confirms the Open Event dialog with
OKAY he will arrive in LEGAL EVENT
STATE. Otherwise he will return to the
state where he came from, indicated by
an H.

6.2 Implementation

The triggering of a menu command is routed to the User Command Controller
whose finite state machine runs the statechart. The statechart is defined by
a state table, a static data structure which contains the flattened statechart.
At runtime, the User Command Controller uses this state table to control the
behavior of the application. Events come from user interactions. Actions are
methods of the Application Controller.

6.3 Discussion

Ergonomics Modeling the control flow of a program with a statechart supports
software ergonomy. The statechart maps the working procedure in the office to
the control flow of the program. The result is a clear, transparent behavior of
the program which users understand effortlessly. Our users have never asked
questions such as “where am I?” or “how did I get here?”.

It was possible to keep the statechart simple because all categories and events
are processed according to the same pattern (see mechanisms #2 and #3). All
of them are handled with the same actions.

Static data structure We decided to implement the state table in a static
data structure instead of a dynamic one, because statecharts rarely change in
our products.
9 Please do not confuse the events in the statechart with legal events.

Product Line The description of the statechart in the meta level decouples
application control from GUI infrastructure. E.g., on the MS Windows platform
we redirect MFC’s message map to the User Command Controller’s state table.

The implementation of the finite state machine is reusable with other state-
charts. E.g., the functionality of the software can be reduced by removing states
and transitions from the statechart. Variant products can sometimes be obtained
by providing a different state table.

6.4 Related Mechanisms

The User Command Controller is not directly connected to mechanisms #1, #2,
or #3. The repository edo facilitates the use of the finite state machine: actions
share data in the repository.

6.5 Remarks

There are several techniques to implement statecharts, see [13] and [7].
As shown in figure 8 our statechart is a bipartite graph where states are dis-

tinguished from actions. This notation visualizes behavior clearly and coherently.
We used it long before UML came up. Nevertheless, this notation can easily be
made UML conformant by using stereotypes to distinguish states from actions.

7 Conclusion

To conclude this paper, we discuss the contribution of the four mechanisms

– #1: Data Reference and Access by Symbolic Names
– #2: Input and Output Control by Domain Specific Descriptions
– #3: Application and Domain Logic by a Rule Engine
– #4: User Command Control by a Finite State Machine

to the realization of variability in the product line.

7.1 Realizing Variability of the Domain

Mechanism #1 The Event Data Object is a core asset used in all products.
Each product gets a Data Definition of its own.

Mechanism #2 The domain-specific languages are core assets used for all
products. They need extension for some products (e.g., Austrian registry offices
need extra formatting which is not used in Germany).

Mask Controller and Document Formatter are core assets. They need adapta-
tion if a certain function needs different implementations for a product.

Mask Descriptions and Document Descriptions are product-specific. Some de-
scriptions can be used for more than one product.

Mechanism #3 Event Controller and inic are core assets used in all products,
while Category Descriptions are product-specific.

Mechanism #4 The User Command Controller is a core asset used in all prod-
ucts, while the State Table is product-specific.

7.2 Realizing Variability of Technology

Mechanism #1 Different database technologies require different implementa-
tions of some parts of the Event Data Object and the Data Access Module, while
data reference remains unchanged.

Mechanism #2 Changes due to technology do not affect Mask Descriptions
and Document Descriptions at all.

Printing depends on printing technology, but the Document Formatter does
not. (We do not go into the details here.)

The Mask Controller depends on GUI infrastructure to a high degree, so do
the Mask Objects Archives and magic, which has to generate output appropriately.
The mask description language depends to a certain degree on the possibilities
which the platform provides. We kept both magic and the mask description
language downward compatible.

Mechanism #3 is completely independent of technology.

Mechanism #4 The User Command Controller depends on the GUI. Events
resulting from user interactions have to be redirected to the User Command
Controller.

7.3 Applicability of these Mechanisms

Our mechanisms will suit if

– events have to be processed and follow certain patterns
– data can be modeled according to our principles
– many different masks and forms are needed
– several products are developed
– domain logic should be saved when technology changes and vice versa

7.4 Issues

If domain-specific languages are used to capture domain logic, the scope of these
languages will define the capabilities of the products. This is both an advantage
and a disadvantage.

The system has the advantage of being uniform. Both developers and users
understand it easily. It’s in the nature of this architecture that features of the
same type behave in the same way. They appear in the meta level many times
but their processing is implemented only once.

The disadvantage is that special cases, exceptions, or ad-hoc variations are
impossible or only possible with more effort.

Developing this architecture and these mechanisms required not only a deep
and thorough understanding of the domain but also the discovery of patterns in
the domain. The mechanisms used in this architecture fit to these patterns. In
particular, our data model matches the structure of the legal events. We took
it as a basis to schematize the domain. “Problem analysis takes you from the
level of identifying the problem to the level of making the descriptions needed
to solve it” says Michael Jackson in [8].

We join domain expertise with software engineering. Domain experts directly
contribute to software development: In the data references they have found a
powerful, efficient means of expression. As the owners of Mask Descriptions, Doc-
ument Descriptions, and Category Descriptions they have gained control over the
domain-specific aspects of application development.

The analysis of the domain has led to languages which allow the description
and specification of product behavior. Variant descriptions specify variants in
the product line.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman: Compilers: Principles, Techniques, and
Tools, Addison-Wesley 1986

2. P. Clements, L. Northrop: Software Product Lines, Addison-Wesley 2002
3. M. Fowler: Patterns of Enterprise Application Architecture, Addison-Wesley 2003
4. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns, Addison-Wesley

1995
5. D. Harel: Statecharts: a Visual Formalism for Complex Systems in Science of Com-

puter Programming No. 8, p. 231 – 274
6. A. I. Holub: Compiler Design in C, Prentice-Hall 1990
7. I. Horrocks: Constructing the User Interface with Statecharts, Addison-Wesley 1999
8. M. Jackson: Problem Frames – Analyzing and structuring software development

problems Addison-Wesley 2001
9. F. Keller et al.: Improving Knowledge Transfer at the Architectural Level: Concepts

and Notations in Proceedings of the 2002 International Conference on Software
Engineering Research and Practice Las Vegas 2002

10. A. Knöpfel: FMC Quick Introduction, Hasso Plattner Institute for Software Sys-
tems Engineering, Potsdam, Germany, 2003 <http://fmc.hpi.uni-potsdam.de>

11. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-Oriented
Software Architecture, John Wiley & Sons 1996

12. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen: Object-oriented
Modeling and Design, Prentice-Hall 1991

13. M. Samek: Practical Statecharts in C/C++, CMP Books 2002
14. H. Schmitz, H. Bornhofen (editors): Dienstanweisung für die deutschen Standes-

beamten und ihre Aufsichtsbehörden 2. Auflage, Verlag für Standesamtswesen 2001
15. H. Schmitz, H. Bornhofen (editors): Personenstandsgesetz 10. Auflage, Verlag für

Standesamtswesen 2003
16. A. Silberschatz, H. F. Korth, S. Sudarshan: Database System Concepts 4th edition,

McGraw-Hill 2002

17. T. Thai, H. Q. Lam: .NET Framework Essentials: Introducing the .NET Frame-
work, O’Reilly 2001

18. J. W. Yoder, R. Johnson: The Adaptive Object-Model Architectural Style in Pro-
ceedings of the Working IEEE/IFIP Conference on Software Architecture 2002
<http://www.joeyoder.com/papers/>

	Four Mechanisms for Adaptable Systems
	Introduction
	1 A Product Line of Legal Expert Systems
	1.1 Scope
	1.2 Basic Product for German Registrars
	1.3 Domain Characteristics
	1.4 Requirements

	2 Architecture
	2.1 Architectural Decisions
	2.2 Overview of the Architecture
	2.3 Remarks

	3 Mechanism #1: Data Reference and Access by Symbolic Names
	3.1 Solution
	3.2 Implementation
	3.3 Discussion
	3.4 Related Mechanisms
	3.5 Remarks

	4 Mechanism #2: Input and Output Control by Domain-Specific Descriptions
	4.1 Solution
	4.2 Masks
	4.3 Documents
	4.4 Discussion
	4.5 Related Mechanisms
	4.6 Remarks

	5 Mechanism #3: Application and Domain Logic by a Rule Engine
	5.1 Solution
	5.2 Implementation
	5.3 Discussion
	5.4 Related Mechanisms

	6 Mechanism #4: User Command Control by a Finite State Machine
	6.1 Solution
	6.2 Implementation
	6.3 Discussion
	6.4 Related Mechanisms
	6.5 Remarks

	7 Conclusion
	7.1 Realizing Variability of the Domain
	7.2 Realizing Variability of Technology
	7.3 Applicability of these Mechanisms
	7.4 Issues

	References

