
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2005; 10: 103–124
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spip.222

Four Mechanisms for
Adaptable Systems:
A Meta-level Approach to
Building a Software
Product Line Research Section

Claudia Fritsch1*and Burkhardt Renz2

1 Robert Bosch GmbH, P.O. Box 94 03 50, D-60461 Frankfurt, Germany
2 University of Applied Sciences Giessen-Friedberg, Department MNI,
Wiesenstr. 14, D-35390 Giessen, Germany

Meta-level architectures combined with domain-specific languages serve as a powerful tool to
build and maintain a software product line: Meta-level architectures lead to adaptable software
systems. Executable descriptions capture expert knowledge.

We have developed a meta-level architecture for a software product line of legal expert
systems. Four meta-level mechanisms support both variability and evolution of the product
line. Domain analysis had shown that separation of expert knowledge from technical code
was essential. Descriptions written in domain-specific languages reside in the meta level, and
serve as specification, code, and documentation. Technical code finds its place in interpreting
machines in the base level.

We discuss how meta-level architectures influence the qualities of software product lines
and how properties and patterns of the problem space can guide the design of domain-specific
languages. Copyright 2005 John Wiley & Sons, Ltd.

KEY WORDS: software product lines; software architecture; meta-level architectures; domain-specific languages; adaptable software

1. INTRODUCTION

For more than 10 years, we have developed
and maintained a software product line of legal
expert systems. This software product line is made
by a German publishing house specializing in
international civil law and law of civil status.
Today, the company is the German market leader.

∗ Correspondence to: Claudia Fritsch, Robert Bosch GmbH,
Corporate Research and Development, P.O. Box 94 03 50, D-
60461 Frankfurt, Germany
†E-mail: Claudia.Fritsch@de.bosch.com

Copyright 2005 John Wiley & Sons, Ltd.

On the basis of our experience, we discuss the
influence of meta-level architectures on product line
engineering, and the advantages of domain-specific
languages.

The products of this product line share certain
functionality, such as interaction with the user by
means of a graphical interface, filing data, storing
information in a database, and printing documents.
They differ mainly in two points:

• Domain descriptions defining input and output
as well as how to produce output from input.
These descriptions depend on complex legal
regulations.

Research Section C. Fritsch and B. Renz

• Technical infrastructure comprising operating
system, GUI framework, and database system.
Different constraints emerge through changes
both in customer requirements and in technol-
ogy over time.

Section 2 introduces the product line.
When we designed the architecture for this soft-

ware product line, we focused on two requirements
in particular:

• Domain experts should be involved in develop-
ment, but should not have to learn a general-
purpose programming language.

• Changes in domain descriptions should leave
technical code untouched and vice versa.

The solution for both was to separate the
programs’ domain descriptions from technical code.
Using a meta-level architecture, we achieved a
sound decoupling: Domain descriptions written in
domain-specific languages are kept in the meta level.
Appropriate engines included in the base level act
according to these descriptions. Section 3 explains
this architecture.

In Section 4, we present the four meta-level
mechanisms that we have developed for the design
of this software product line. They separate domain
descriptions from technical code in the following
areas:

• data access
• filing input and printing output
• application logic
• program control flow.

These mechanisms have brought many benefits:

• Highly valuable domain expertise is captured
and is readable, maintainable, and available for
developers. It is also guaranteed to be up-to-
date.

• The software is quickly adaptable to changes in
the domain or in technology.

• Domain descriptions are explicitly present in the
meta level, executed by the engines in the base
level. Traceability is therefore trivial.

Section 5 discusses the interesting effects of a
meta-level architecture on product line engineer-
ing. Our architecture and the languages are used
in all products. Variability of the domain resides
in the meta level, variability of technology in
the base level. We discuss the impact on qual-
ity attributes, namely modifiability, performance,

testability, availability, security, and usability. Our
architecture enhances modifiability and usability,
which both were major architectural goals.

The domain-specific languages that we devel-
oped play a major role in the success of our product
line, its efficient development, and the capturing
of domain knowledge. However, these benefits
are not guaranteed. The scope of these languages
defines the capabilities of the products. One has
to analyze the domain systematically and design
the languages thoroughly. Section 6 emphasizes the
indispensability of understanding the domain and
gives guidelines for the design of domain-specific
languages.

Finally, Section 7 gives a conclusion.

2. A PRODUCT LINE OF LEGAL EXPERT
SYSTEMS

The products in this software product line are made
for registrars and similar offices. The product line
covers the German and Austrian market. Variants
reflect national and regional legislation and practice.

The software processes civil transactions, such
as the registration of births or marriages. Inputs
for each civil transaction are personal data that
are processed according to complex legal rules.
The output of each civil transaction is a set of
documents. Customers demand software guaranteed
to be legally correct (i.e. observing the Law on
Personal Status (Schmitz and Bornhofen 2003)).

2.1. Scope

German and Austrian laws of civil status have
the same structure (as distinct from the Anglo-
Saxon juridical system), but differ in many details.
Austrian registrars additionally administer citizen-
ship – a transaction that does not belong to the
duty of German registrars. In Germany, Land law
(state law) adds specific rules to federal law. This
demands variants of the software. The govern-
ment has assigned special tasks to some registry
offices, requiring more variants. While these vari-
ations result from differences in the domain, other
reasons for variability stem from technology.

The products have to support different technolo-
gies demanded by the customers. Registry offices
are equipped with different hardware and soft-
ware: some have networks, others do not. Some use

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

104

Research Section Mechanisms for Adaptable Systems

relational database management systems, such as
Oracle or MS SQL Server, others ask for a low-cost
(or even no-cost) database. We call combinations of
these technologies platforms. The use of these dif-
ferent platforms has consequences for the software.
Nevertheless, the software has to offer the same,
required functionality on each platform.

Some products in this product line have been
on the market for more than 10 years. Technology
has been changing; accordingly, the software has
been subject to change. Customers follow the
technology change. Some of them do it fast, but
the financial situation of others does not allow
up-to-date technology (e.g. the switch to 32-Bit-
Windows spread over more than 5 years). This is
another reason why the product line has to support
different platforms at the same time: The products’
life cycles overlap.

Changes in the domain are initiated by changes
in the law or the development of society reflected in
the law, and they occur independently of changes in
technology. Technical changes and domain-specific
changes have to be made at the same time, but
without interference.

2.2. Basic Product for German Registrars

To illustrate the characteristics of the domain,
we give an overview of the product for German
registrars below.

A German registry office is divided into five
departments. The work in each department is divided
into 4–12 categories. Examples of departments are
births, deaths, and marriages. Examples of cat-
egories in the birth department are registration
of a birth, legitimation of a child, and adoption.
Altogether, there are about 40 categories. In each
category, civil transactions are processed. An exam-
ple of a civil transaction is the registration of the
birth of one child.

A civil transaction may come in many varieties,
depending on the family background and number
of people involved. The varieties of the transactions
rank from simple standard to highly complex
involving international law. So, even within the
same category, the amount of data required for one
civil transaction differs. It might involve a different
number of people, different nationalities, and so on.

Many civil transactions are processed completely
within an hour, others take weeks to be finalized.

For example, the registrar may enter the data on a
marriage up to 6 months in advance.

When a civil transaction has been processed, the
output is a set of documents. Forms, required by
law, must be filled out. Examples of documents are
personal registration certificates, register entries,
decrees, and notifications to other offices.

The output is strictly regulated by law (Schmitz
and Bornhofen 2001, 2003), i.e. the layout of
documents and even the wording of the contents.
Sometimes, the rules are incomplete or conflicting.
These cases are left to the registrar’s discretion. The
software, although an expert system, must leave
final decisions to the registrar.

2.3. Domain Characteristics

The following characteristics are the key results of
domain analysis.

• The civil transactions have the following prop-
erties in common:

– A varying amount of data is required,
depending on the background and number
of people involved.

– The required data and the documents that
have to be printed follow certain patterns,
depending on circumstances such as nation-
ality or marital status.

– A registrar may work on one civil transaction
for a long time.

– Data may be incomplete during processing.
– Data may not be changed after registration.

• The law of civil status
– may change several times a year, and time

between proclamation and the effective date
is short

– can be mapped to processing rules to a high
degree, but these rules may not limit the
registrar’s authority

– is incorporated in forms, certificates, and a
flow of work; registrars fill out forms and
domain experts ‘think’ in forms, too.

• The registrars and personnel in registry offices
– may either be experts in the field or have

basic knowledge
– have different computer skills
– work in about 6000 German registry offices

equipped with various platforms.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

105

Research Section C. Fritsch and B. Renz

2.4. Requirements

From the domain characteristics, we derive the
requirements our products have to fulfill. The
following requirements lead to the four mechanisms
we are going to describe:

• Usability: The software should
– capture domain expertise and map it to

processing rules
– adapt to working methods in the office (not

vice versa)
– reflect the registrars’ way of thinking, the

work process, and the division of labor in the
offices

– support many varieties of a civil transaction,
depending on the current data

– guarantee legal correctness.
• Maintainability: The developers have to

– adapt the software to changes of regulations
several times a year

– implement and test changes quickly
– adapt the software to new technology with-

out affecting the captured domain expertise
and vice versa

• Platform independence: The software should
– run on different operating systems
– offer several databases
– be easily adaptable to different user inter-

faces (GUIs)

3. ARCHITECTURE

The products in our product line share a common
architecture. We outline this architecture, focusing
on the points that give reasons for the four
mechanisms.

3.1. Architectural Decisions

1. Organize the processing of a civil transaction
in a series of masks. Users and domain experts
are used to working with forms. Forms guide
them through the processing of a civil transac-
tion. The software should support this working
method. Our basic decision was therefore to

• collect the data needed to process a civil
transaction in a series of masks (data entry
screens) that act as a master form

• use this data to print all documents (certificates,
register entries, notifications, etc.)

• react on input immediately, guiding the user
through the transaction

This decision implies the following:

• The series of masks depends highly on the
current data of the concrete transaction. The data
affects the number and order of masks presented
and the control of the input on the masks.

• The masks contain domain knowledge, both
legal regulations and common practice.

With this, the domain logic and the presentation
of the application (in the form of series of masks)
would be coupled tightly if we implemented the
masks in a general-purpose language using the
infrastructure of a specific GUI class library. Instead:

2. Describe masks in a domain-specific language.
We designed a domain-specific language in which
domain experts describe the layout and behavior
of masks, in particular,

• input fields
• constraints on these fields
• control of input according to domain require-

ments.

This language does not depend on any GUI class
library; rather, it yields a new level of abstraction.
We regard this separating of the domain knowledge
from the technical infrastructure as decoupling by
abstraction. Masks are described without reference
to a specific implementation, but are translatable into
a representation for a certain GUI.

However, this second step in the development of
the architecture has a drastic consequence: Naming
data items and accessing their values have to be
basic elements of the language.

3. Reference data by symbolic names. We abstract
the actual storage of data to a data model
where items are referenced by symbolic names
(see mechanism #1). It turns out that this
mechanism is the base of our architecture. The
data items referenced by symbolic names form
the repository that glues together

• the controlling of the masks
• the generation of documents
• the control flow of the application.

As a further result, data reference is database
independent.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

106

Research Section Mechanisms for Adaptable Systems

These ideas lead to the following principles,
which we will use over and over again:

A meta-level architecture separates domain
descriptions from technical code. A prerequi-
site is to find the properties of the processing of a
civil transaction, both the content and the work-
flow. These properties are not part of the code,
but allow us to describe the civil transaction
at the meta-level. The base level executes these
domain descriptions by means of interpreters
and data-controlled engines, written in general-
purpose languages (C, C++, Java). This permits
us to move to another technology (e.g. a new
database system or another operating system)
without touching the expert knowledge.
Domain expertise is captured in executable
descriptions. All expert knowledge is con-
tained in domain descriptions, namely masks,
documents, domain logic, and the data model.

Domain-specific languages enable domain experts
to describe their highly complex knowledge
readable, maintainable, and executable: These
descriptions control the base level. The captured
knowledge is our most valuable core asset.

Domain descriptions are strictly separated from
technical code and each description is in only one
place. This allows us to embrace changes in the
domain.

3.2. Overview of the Architecture

Figure 1 shows the high-level, compositional struc-
ture of our product line architecture1 The compo-
nents needed at runtime are shown on the left;

1 As notation, we use Fundamental Modeling Concepts (FMC)
developed by Siegfried Wendt and described in Knoepfel (2003)
and Keller et al. (2002).

Figure 1. Overview of the architecture (FMC notation)

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

107

Research Section C. Fritsch and B. Renz

development on the right. The behavior of the sys-
tem is described on the specification level. These
domain descriptions are transformed into the meta-
level objects that control the components of the base
level at runtime.

The Application Controller starts the
application and passes control to the User
Command Controller. The User Command
Controller reacts to user commands invoked
by the application menu according to the State
Table that describes the dynamic behavior of the
application. When the user chooses a category
and opens a civil transaction for processing,
the Transaction Controller reads from the
Category Rules how to handle this civil
transaction.

The Transaction Controller passes control
to the Mask Controller when the user opens
a mask to enter data. The Mask Controller
dynamically generates presentation objects from
the Mask Objects Archives and shows them
on the screen. It uses data references to establish a
connection between the input fields and the Trans
Data Object, containing the data for the current
civil transaction. (The same mechanism is used for
dialogs, but neither is shown in the figure nor
discussed in this paper.)

When the user issues the command to print doc-
uments, the Application Controller passes
control to the Document Formatter.

The Mask Controller and the Document
Formatter need the data of the current civil
transaction. Whenever data access is necessary,
they demand this service from the Data Access
Module or, more specifically, the Trans Data
Object.

During development, domain experts spec-
ify Mask Descriptions and Document Descrip-
tions in domain-specific languages. The compilers
magic and formic translate these descriptions
into Mask Objects Archives and Document
Three-Address Codes respectively.

The rules that tell the Transaction Con-
troller, which masks and documents are required
according to the constellation of the current civil
transaction are specified in Category Descrip-
tions. The preprocessor inic translates them into
Category Rules.

Software developers specify the Data Defini-
tion of the database. The compiler cdic translates
it into a Data Dictionary and a Data Mapping.

Using the Data Dictionary, magic, formic,
and inic verify the data references in the descrip-
tions. The Data Mapping, read by the Trans
Data Object, provides information on tables, pri-
mary keys, and integrity constraints.

3.3. Remarks

The meta-level architectural pattern is discussed
e.g. by Buschmann et al. (1996) and Yoder and
Johnson (2002). These discussions focus on meta-
object models that determine the creation and
behavior of base-level objects at runtime by a
reflection mechanism. In our mechanisms, meta-
data written in domain-specific languages describe
meta objects. Reflection mechanisms have their
place in the implementation of the controllers at
the base level.

Both the domain knowledge and its transforma-
tion into workflows should not be hardwired into
the code. We tried to find the most convenient way.
The domain experts describe all layers of the appli-
cation on the specification level – the data, the input
and output, and the control – and these descrip-
tions are transformed to control the base level. This
solution is generic by means of mask and doc-
ument generators. Their application, however, is
very specific to the domain.

Interactive systems are often described by a layer
architecture. Basically, three conceptual layers are
distinguished: the presentation, the domain logic,
and the persistence layer (e.g. as described by
Fowler (2003)).

Our architecture has layers in two dimensions:
with respect to base and meta-levels as well as
concerning responsibilities. In both the base level
and the meta-level, we distinguish presentation,
domain logic, and persistence. The most interesting
aspects of the meta-level architecture with respect
to layering are as follows:

• The layers in the meta-level are tightly cou-
pled, supporting the required domain-specific
dependencies. The construction of the meta-
level follows the way domain experts describe
the processing of civil transactions. For this rea-
son, we avoid indirection wherever possible.

• The layers in the base level are extremely
decoupled. Engines in each base-level layer
interpret the meta-level descriptions at runtime.
These engines do not hardwire domain-specific

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

108

Research Section Mechanisms for Adaptable Systems

logic, but process the meta-level descriptions.
The architecture provides access points to the
layers; the engines do not depend on each other
in any other way. Consequently, the base-level
engines can operate in different combinations in
the various products of the product line.

4. MECHANISMS

4.1. Mechanism #1: Data Reference and Access
by Symbolic Names

References to data items are needed in the meta-
level to specify data input, document contents, and
workflow. We want to reference and access data
items by names. We want to ignore where data is
stored and how.

4.1.1. Solution

Within a civil transaction, a symbolic name
uniquely identifies a data item. The symbolic name
determines the access path to the data in the
database. At runtime, a dynamic data object serves
as a container for this data and is responsible for
its persistence.

Data Model. To define a naming convention for
data items, we need a convenient data model. In
our application, each civil transaction is assigned
a unique root entity whose primary key is called
Civil Transaction Identifier (vid). We
can then organize the data involved in the civil
transaction in entities so that each entity has a 1:1
relationship or a cascading 1 : n relationship to the
root entity. Each entity type has a compound primary
key whose first item references the vid.

Figure 2 shows the principle in an example: Root
table hbrt contains one row for the marriage
identified by vid 1234. In table hbvp, there
is one row for fiancé Schneider and one row
for fiancé Bergmann, distinguished by ptype e
and s respectively. anzve holds the number of
previous marriages. Mrs. Bergmann, now divorced,
was previously married to Mr. Olthoff, while Mr.
Schneider is unmarried. So table hbve has one
entry. This row is linked to hbrt by the vid and to
hbvp by the vid and ptype s.2

2 Please do not be troubled by cryptic abbreviations such as hbvp.
They are reasonable abbreviations for Germans. Our domain
experts love them.

Figure 2. A part of the data model illustrating the
principle of relationships

Data Reference. A symbolic name consists of the
row identifier (i.e. the name of the entity type and
the key information) and the field identifier (i.e. the
name of the attribute). A dot separates the row and
field identifiers. Using the example of Figure 2, the
symbolic name
hbve[s][1].partner
references Olthoff, the name of the previous

spouse of Mrs. Bergmann. It corresponds conceptu-
ally to the SQL statement
select partner from hbve where vid=?

and ptype=‘s’ and venr=1.
Data Access. The data of one civil transaction is

encapsulated in a Trans Data Object (tdo).
Assisted by the Data Mapping, tdo translates
the symbolic name into a data access path. To
continue with our example, tdo reads in the Data
Mapping that the compound primary key of hbve
is composed of the attributes vid, ptype, and
venr, as indicated in Figure 2. The vid is the
identifying attribute of the tdo. At runtime, its
value replaces the placeholder ?. So, tdo has all
the necessary key information to access the data of
hbve[s][1].partner.

The tdo holds the data of a transaction in
memory. We implemented two strategies to load
the data from the database into the tdo:

• Load all data rows identified by the same vid.
This gives a full in-memory copy of the data
belonging to this civil transaction.

• Load only those data rows requested by the
application (lazy load). At each request, tdo
checks whether the requested data is already in
memory (i.e. contained in the current tdo).

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

109

Research Section C. Fritsch and B. Renz

Which strategy we choose depends on the
infrastructure. If the database connection is fast,
we can load all data rows when opening the civil
transaction. If, however, the database connection is
rather slow, we will use lazy load. Otherwise, the
user would have to wait too long for the first mask.
It is even possible to mix both strategies, that is,
load the core data on creation of the tdo and load
the remaining data as requested by the application.

Concurrency Control. The data values in the
Trans Data Object (i.e., in memory) have to
be synchronized to the database. The Trans Data
Object intercepts all database access and keeps a
log of the state of the data in memory. Therefore,
the Trans Data Object has to perform long-
duration transactions (Silberschatz et al. 2002).

As databases usually do not support long transac-
tions, we implemented a check-out/check-in mech-
anism used by the Data Access Module. On
creation of a tdo, the current user is recorded in the
corresponding root entity, and all other users are
denied access.3

Figure 3. Code structure of the Trans Data Object
(UML notation)

3 This is in no way a restriction. It meets the working procedure
in the offices.

4.1.2. Implementation
Figure 3 shows the structure of the implementation
of tdo: The class Trans Data Object (tdo) is
a container of Row Data Objects (rdos). Each
object of class tdo is uniquely identified by the vid
given on construction of the tdo. tdo’s methods to
retrieve and store the values in the database delegate
this responsibility to the rdos, tdo’s components.

Each object of class Row Data Object stores
one row of data. It has an attribute rdoName whose
value is the row identifier. An rdoName is unique
within the rdos contained in one tdo.

Each rdo consists of an Row Data Buffer
and a list of Field Descriptors. The Row
Data Buffer stores the data. It is allocated
dynamically at runtime and structured by the
Field Descriptors. Each Field Descriptor
contains the meta-information of the corresponding
database field: name, type, and length. This meta-
information is retrieved from the system catalog of
the database at runtime. The Field Descriptor
is used to make all necessary type conversions and
to inform the application about the type of a data
item in the database.

The rdo keeps track of its state with respect to
the database in its attribute rdoState. The state
of an rdo is characterized by the statechart in
Figure 4.

When created, the rdo is initialized from the
database. If the corresponding row exists in the
database, the data are loaded, and the state of
the object is PERSISTENT. Otherwise, it is TRAN-
SIENT.

The methods of the rdo manipulate the data
in the Row Data Buffer and change the state
of the rdo accordingly. The methods SetField()

Figure 4. Data persistency and synchronization (UML
statechart notation)

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

110

Research Section Mechanisms for Adaptable Systems

and Save() change the state of the rdo to ensure
the correspondence to the state of the data in the
database.

The method Save() chooses the appropriate action
on the database according to the state of the rdo.
In state UPDATE Save() performs an update of the
data row. In state INSERT it inserts a new row in
the table. The primary key of the new row is given
by the rdoName. In state PERSISTENT or TRANSIENT,
nothing needs to be done.

4.1.3. Discussion
The data model and data reference are simple: The
data model consists of 1 : 1 and 1 : n relationships
only. It is mapped directly to the data defini-
tion of relational databases. Software developers
and domain experts can easily keep both the data
model and data reference in mind.

The data reference is database-system independent
and programming-language independent: The sym-
bolic name is a character string. It introduces an
indirection between the data reference and data
access. The data reference assigns a meaning to
a database field – it establishes the necessary cou-
pling in the meta-level. The symbolic name may be
translated to any database-access technique.

Changes in the Data Definition affect the
users of the data (Mask Descriptions and
Document Descriptions), while the data-access
mechanism remains unchanged.

Data access is generic and dynamic: tdo provides
a data-access mechanism and a data container,
but does not know which data to access. This
information is contained only in the meta-level:
the symbolic names. tdo resolves symbolic names
at runtime.

Data access is portable: We had few problems
with incompatibilities of SQL databases because we
only used a small subset of SQL. We were even
able to implement this SQL subset on a navigating
database. A simple data model has led to database-
system independence.

The basic idea of the Trans Data Object
can be extended easily to a check-out/check-in
mechanism with a more sophisticated data mapping
and naming convention. An option is to use an XML
data model and a subset of XPath or XQuery as a
naming convention to identify individual data items
or even groups of them.

4.1.4. Related Mechanisms

Mechanism #1 is the basis for the other three
mechanisms. They use the symbolic names.

4.1.5. Remarks
The concept of the Trans Data Object and the
use of a statechart to control the state of the rdos
was inspired by Rumbaugh et al. (1991, Chap. 20).

The patterns in Fowler (2003, Chap. 11 and 13
are closely related to our approach: the Unit of
Work, Metadata Mapping, and Repository patterns
share concepts with the Trans Data Object.
However, we use the Trans Data Object to
store and retrieve data values whose access paths
are given dynamically – by symbolic names, in fact.
So the Trans Data Object is more restricted in
terms of the data model, but within that more
generic.

The disconnected data set of Microsoft’s ADO.
NET (see e.g. Thai and Lam (2001)) has many sim-
ilarities to the Trans Data Object. We already
mentioned that an XPath-based naming convention
could be used instead of ours.

4.2. Mechanism #2: Input and Output Control by
Domain-specific Descriptions

The data necessary to process a civil transaction is
collected in a series of masks, i.e. input forms. The
Mask Controller reacts on input immediately
and guides the user through the transaction,
depending on the specific situation.

The data is then used to print all required
documents. Usually, a civil transaction results in
5–20 documents, each comprising 1–4 pages.

4.2.1. Solution

For each transaction, platform-independent mask
and document descriptions define which data is
entered and how forms are filled out. They are
written in domain-specific languages. At runtime,
the compiled descriptions control the layout and
behavior of masks and the content and formatting
of documents.

Mask and document descriptions are written in
languages that we designed according to the needs
of the domain. Certain functions of the languages
provide the domain-specific features, notably

• properties of fields on masks and documents
Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

111

Research Section C. Fritsch and B. Renz

• processing of input
• formatting of output.

We continue describing the solution and imple-
mentation for masks and documents separately.

4.2.2. Masks
Concept. An Mask Description defines a static
structure and dynamic behavior:

• The layout of the mask is defined by placing
labels and input fields according to a column
raster.4

• Each input field is assigned the symbolic name
of the data item that stores the input.

• Input is assisted in certain fields by domain-
specific functions, such as date functions, auto-
completion, and calculations.

• Actions are triggered by user interaction events
(enter or quit the mask, enter or quit a field, even
type certain characters in a field). Actions are
domain specific and may depend on parameters,
data in input fields, or data of the current
transaction:
– (pre-)fill fields with data
– disable/enable fields
– check the logical state of input.

Implementation. The compiler magic translates
the platform-independent Mask Descriptions
into the platform-dependent Mask Objects
Archives. For example, for MS Windows, these
are serialized C++ objects. At runtime, the Mask
Controller uses the Mask Objects Archives
to control the mask.

The Mask Controller shown in Figure 5 is
designed according to the Presentation Abstraction
Control (PAC) architecture (Buschmann et al. 1996).
The Presentation manages the screen, intercepts
arriving messages, and routes them to the Control.
The Abstraction maintains the data via the Trans
Data Object. Moreover, the Abstraction keeps all
meta-level information to provide the intelligence
needed to handle user interactions that require
executing functions, disabling fields, and so on.

4 A template defining the layout of the masks was developed by
a UI designer.

Figure 5. The PAC architecture of the Mask Con-
troller, exemplified with MFC (UML notation)

The Control – the mediator between Presentation
and Abstraction – recognizes the input, asks the
Abstraction what to do, executes the appropriate
functions, passes the result back to the Presentation,
and returns control to the operating system. With
this interaction between the components of the
PAC architecture, the behavior of fields and masks
is not hardwired into the code, but determined
by the meta-level information contained in the
Abstraction.

4.2.3. Documents
Concept. A Document Description defines lay-
out and content:

• A set of fields defines the layout of the document.
Each field is defined by a composition of rectan-
gles, namely, their positions on the document,
length, and height.

• A set of formatting rules defines the properties
of each field. A field may have several of about
20 properties, notably

– generic properties (e.g. flush left/right)
– domain-specific properties (e.g. the number

of in-between lines).
• Assignments define the content of each field.

– A field may contain static text, data items, or
any composition of these.

– The filling of fields may depend on param-
eters or on any data of the current transac-
tion. The language provides if-then-else and
switch-case for that.

For all this, the language provides about 60 func-
tions, implemented in the host language. Figure 6
gives an idea of the language.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

112

Research Section Mechanisms for Adaptable Systems

Figure 6. An example from a Document Description

Implementation. The compiler formic trans-
lates a Document Description into platform-
independent Document Three-Address Code
(see Figure 1). One instruction consists of a des-
tination, two operands, and an operator.

At runtime, the Document Formatter com-
poses a document from the Document Three-
Address Code and the data provided by the
Trans Data Object (Figure 7). First, the Doc-
ument Formatter loads the Three-Address
Code and the Symbol Table into memory. With
the help of the tdo, it replaces all data references
in the Symbol Table with the current data val-
ues. Then, the Virtual Machine processes the
Three-Address Code. Using functions in the
Function Pool it computes the content of each
field and stores it in its destination in the Symbol
Table. The functions are implemented in the base
level, comprising not only generic functionality but
also domain-specific features. After processing of
the Three-Address Code, the Symbol Table

Figure 7. Compositional structure of the Document
Formatter

contains all the information necessary to produce
the document (i.e. field contents and properties).
Finally, the Document Formatter traverses the
Symbol Table and produces a virtual document
in memory. This document contains the completely
processed content in a device-independent format
tagged with printing instructions. When printing
the document, these instructions are replaced with
the commands for the current printer.

4.2.4. Discussion
In each Mask Description and Document
Description, highly valuable domain expertise
is captured and is readable, maintainable, and
available for domain experts and software
developers. Each description serves as a
specification, code, and documentation. It is also
guaranteed to be up-to-date, because this domain
knowledge is captured in no other place.
Mask Descriptions and Document Des-

criptions inherently expose a high degree
of correctness because the languages guarantee
consistency and prevent programming errors.
Testing is reduced to a black-box test of
functionality. (See the discussion of quality
attributes in Section 5.5)

‘Coding’ masks and documents comes close to
specifying because the languages are declarative.
They are procedural only where necessary. Given
these tools, our domain experts can easily translate
concepts they have in mind into the descriptions.
After a while, they got used to think in the functions
of masks and documents.

4.2.5. Related Mechanisms
Mechanism #1. Masks and documents reference
and access data via the Trans Data Object
(tdo). Their data references must correspond to
database fields. The correctness of the data refer-
ences in the Mask Descriptions and Document
Descriptions is checked at compile time:formic
and magic look up all symbolic names in the Data
Dictionary and will report an error if a symbolic
name is not there. This compile time check prevents
failures during the late binding of the meta-level
objects at runtime.

Masks and documents can be parameterized.
For example, the same Mask Description can
collect similar data for different people if a key
attribute, such as ptype, is a parameter. Likewise,

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

113

Research Section C. Fritsch and B. Renz

the same Document Description is used for
different people or different recipients.

Mechanism #3. Depending on the specific situa-
tion, the Transaction Controller determines
which masks to present for input and which docu-
ments to offer as output.

Mechanism #4. TheMask Controller is part of
a Chain of Responsibility (Gamma et al. 1995): Mes-
sages resulting from user interaction are routed to
the Control component of the Mask Controller.
If the required reaction involves only the current
input field, it is handled by the Field Controller
(FldCtrl). If several fields are involved, the Mask
Controller (MskCtrl) is responsible; if another
mask is involved, the Transaction Controller
comes into play. Finally, the User Command Con-
troller is the top level of this chain.

4.2.6. Remarks
We use the Presentation Abstraction Control archi-
tectural pattern presented in Buschmann et al. (1996)
for the design and implementation of the user
interface control components. The dependencies on
the platform are encapsulated in the Presentation
component. Abstraction and Control are platform
independent.

The concepts used for the design of theDocument
Three-Address Code and the implementation of
formic come from the ‘classical’ sources (Aho et al.
1986, Holub 1990).

Both compilers, magic and formic, are made
with lex & yacc. Subroutines in formic are imple-
mented with the m4 macro processor.

4.3. Mechanism #3: Application and Domain
Logic by a Rule Engine

The handling of a civil transaction is organized
as a workflow: it leads the user through a series
of masks. It results – after a juridical check – in
printing several documents. The order of the masks
and the selection of the documents depends on the
specific situation (i.e. on personal data).

The structure of the workflow is common to all
categories of civil transactions, but the concrete
series of masks and documents within a category
is domain knowledge. As such, it would be
inappropriate to program the workflow in technical
code. Instead, we continue to keep the domain
knowledge in the meta-level.

4.3.1. Solution

The workflow is controlled by properties. The prop-
erties describe the series of masks and documents
and the conditions on which masks should be pre-
sented and documents should be printed. These
domain-specific properties are described in the
meta-level. At runtime, a rule engine controls the
workflow using these descriptions.

Each mask or document has the following
properties: a name, parameters that are substituted
on invocation, and conditions that restrict its use,
depending on the current data of a civil transaction.

The complete workflow of a category of civil
transactions consists of a list of all possible masks
and documents and the conditions.5

The conditions – logical expressions – are the
heart of the application and domain logic. All con-
straints are grouped in classes of conditions. Each
class comprises all permissible states of interde-
pendent data items. This is called a logical class
and the logical state within a class. Each condition
can be referenced by its logical class and logical
state.

For example, in processing a marriage, the logical
class ‘marital status’ permits among others the log-
ical states ‘single’ or ‘divorced, number of previous
marriages > 0’, whereas ‘married’ (obviously) is not
allowed. The logical expressions for the fiancée in a
Category Description are

hbvp[s].famstand=="ledig"
&& hbvp[s].anzve==0

hbvp[s].famstand=="geschieden"
&& hbvp[s].anzve>06

4.3.2. Implementation
A Category Description contains the prop-
erties of a category (i.e. the series of masks and
documents and the logical conditions). Category
Descriptions are files in the ASCII format, struc-
tured by sections and tags.7

5 Some masks or documents are repeated several times. The
number of repetitions depends on the current data (e.g. the
number of children). Our descriptions allow for specifying
repetition, but we omit the details in this article.
6 famstand = marital status, ledig = single, anzve = number of
previous marriages, geschieden = divorced
7 The style of Windows ini-files. Our product line started long
before XML was invented.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

114

Research Section Mechanisms for Adaptable Systems

First, inic checks the syntax of data refer-
ences against the Data Dictionary (see Figure 1)
to guarantee the correctness of all data refer-
ences. Then, inic transforms the conditions into
Reverse-Polish Notation. The preprocessor inic
translates a Category Description into a Cat-
egory Rules file. This simplifies and speeds up
the evaluation of the expressions at runtime.

At runtime, the Transaction Controller
starts the processing of a civil transaction by
transforming the Category Rules into runtime
objects. During input, the rule engine evaluates the
conditions to control the behavior of the workflow.

4.3.3. Discussion
Using the concept of logical classes and states,
we initially intended to reach a more declarative
way of describing the domain logic than we finally
did. International civil law brings up a complexity
that is hard to capture in a comprehensive set of
logical expressions. Domain experts often prefer
to design the processing of the civil transaction in
terms of controlling the input on the masks. Many
regulations of the domain are formulated in this
manner (Schmitz and Bornhofen 2001).

4.3.4. Related Mechanisms
Mechanism #1. Category Descriptions refer-
ence data items by their symbolic name. The rule
engine uses the tdo to resolve these references and
access the values of the data items.

Mechanism #2. The Transaction Con-
troller uses the rule engine to determine the
series of masks and documents and gives control to
the Mask Controller and the Document For-
matter. In particular, it provides the parameters
and the reference to the tdo for the processing of
masks and documents.

The Mask Descriptions refer to the Cate-
gory Rules, which describe the integrity con-
ditions of input values. At runtime, the Mask
Controller evaluates the conditions by means
of the rule engine.

4.4. Mechanism #4: User Command Control by a
Finite State Machine

So far, we have described how data is entered
on masks and is used to print documents. The
controlling of the application is still missing. For
example, before users can work at a civil transaction,

they choose the category from the menu and either
open an existing transaction or set up a new
one. After entering the data, they issue a printing
command.

4.4.1. Solution

Describe top-level user commands as events that
trigger actions and move the application from one
state to another. At runtime, a finite state machine
reacts to the events by executing the actions and
transitions.

We describe the behavior of the application by
a statechart. It consists of sets of states, events,
actions, return codes, and two types of transitions.
It is a variant of the statecharts introduced by Harel
(1987).

In a state, an event may occur. State plus event
define the action to be executed. Each action issues
a return code. An action plus a return code define
the follow-up state. Figure 8 gives an example. Both
in CATEGORY STATE and in CIVIL TRANS STATE, the
user may open a civil transaction for processing. If
the user confirms the Open Civil Transaction
dialog with OKAY, he will arrive in CIVIL TRANS
STATE. Otherwise, he will return to the state where
he came from, indicated by an H.

4.4.2. Implementation
The triggering of a menu command is routed
to the User Command Controller whose finite
state machine runs the statechart. The statechart is
defined by a state table, a static data structure that
contains the flattened statechart, i.e. nested states
are transformed into unnested ones.

Figure 8. Part of the user command control statechart

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

115

Research Section C. Fritsch and B. Renz

At runtime, the User Command Controller
uses this State Table to control the behavior
of the application. Events come from user interac-
tions. Actions are methods of the Application
Controller.

4.4.3. Discussion
Ergonomics. Modeling the control flow of a pro-
gram with a statechart supports software ergonomy.
The statechart maps the working procedure in the
office to the control flow of the program. The result
is a clear, transparent behavior of the program that
users understand effortlessly. Our users have never
asked questions such as ‘where am I?’ or ‘how did
I get here?’

It was possible to keep the statechart simple
because all categories and transactions are pro-
cessed according to the same pattern (see mech-
anisms #2 and #3). All of them are handled with the
same actions.

Static data structure. We decided to implement
the State Table in a static data structure instead
of a dynamic one because statecharts rarely change
in our products.

Product Line. The description of the statechart
in the meta-level decouples application control
from GUI infrastructure. For example, on the MS
Windows platform, we redirect MFC’s message
map to the User Command Controller’s State
Table.

The implementation of the finite state machine
is reusable with other statecharts. For example, the
functionality of the software can be reduced by
removing states and transitions from the statechart.
Variant products can sometimes be obtained by
providing a different State Table.

4.4.4. Related Mechanisms
The User Command Controller is not directly
connected to mechanisms #1, #2, or #3. The repos-
itory tdo facilitates the use of the finite state
machine: actions share data in the repository.

4.4.5. Remarks
There are several techniques for implementing
statecharts, e.g. in Samek (2002) and Horrocks
(1999).

As shown in Figure 8, our statechart is a bipar-
tite graph, where states are distinguished from
actions. This notation visualizes behavior clearly

and coherently. We used it long before UML came
up. Nevertheless, this notation can easily be made
UML conformant by using stereotypes to distin-
guish states from actions.

4.5. Applicability of these Mechanisms

Our architecture and mechanisms are applicable
for software systems that process interactive trans-
actions and follow certain patterns. Examples of
such systems are

• tax return
• insurance claims
• loan applications
• negotiating contracts.

Generally, our mechanisms will suit if

• transactions have to be processed and follow
certain patterns

• data can be modeled according to our principles
• many different masks and forms are needed
• several products are developed
• domain logic should survive when technology

changes and vice versa.

The basic idea – let domain-specific descriptions
control the application – can be used to design many
applications. We imagine process control systems,
workflow management systems, automotive or
avionic control systems. In embedded systems, the
interpretation of descriptions may be too slow and
the readable descriptions may consume too much
memory. Here, the descriptions can be compiled to
save runtime resources.

5. META-LEVEL ARCHITECTURE AND
PRODUCT LINES

A product line architecture exploits commonality,
supports the management of variability, and eases
traceability. Commonality is best exploited by a
large-scale reuse of core assets. Variability is real-
ized more easily if it does not require modification
of code or management of complex configurations.
The shorter the trace, the easier it is to handle the
traceability from requirements to implementation
and documentation.

As an example, we discuss the contribution of
our product-line architecture, the domain-specific
languages, and the four mechanisms

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

116

Research Section Mechanisms for Adaptable Systems

• #1: Data Reference and Access by Symbolic
Names

• #2: Input and Output Control by Domain-
Specific Descriptions

• #3: Application and Domain Logic by a Rule
Engine

• #4: User Command Control by a Finite State
Machine

to the realization of commonality, variability, trace-
ability, and product derivation.

Designing a software architecture is about mak-
ing decisions, and these decisions are made on
the basis of the quality attributes that the system
shall expose. Every architect is put in charge of
predicting the qualities, which his architecture will
introduce. It is therefore interesting to study the
influence of a meta-level architecture and domain-
specific languages on quality attributes. We do so
in Subsection 5.5.

5.1. Commonality

In our product line, each product’s architecture is
identical to the meta-level architecture shown in
Figure 1. There are no derived architectures. Every
component and relation shown in the architecture
is part of every product. The distribution of
responsibilities between the base level and the meta-
level is always the same, and the four mechanisms
are used in all products.

• Mechanism #1: Each product needs a database,
data reference, and data access. Nevertheless,
data reference by symbolic names is database
independent.

• Mechanism #2: Each product comprises input of
data and output of documents.

• Mechanism #3: In each product, the Transac-
tion Controller controls the workflow and
Category Descriptions are compiled into
Category Rules.

• Mechanism #4: Each product needs to react
to user commands (e.g. menu commands or
shortcuts). The User Command Controller
receives and processes user commands accord-
ing to the State Table.

The domain-specific languages for mask and doc-
ument descriptions and the symbolic names are
appropriate for the domain.

5.2. Variability

We distinguish between variability of the domain
and variability of technology. Our architecture
distinguishes clearly where they take place.

5.2.1. Realizing Variability of the Domain
Variability of the domain is primarily realized at the
specification level, see Figure 9.

Mechanism #1. Each product needs a Data
Definition. This Data Definition is kept in
one file that belongs to this product. If products
share the same Data Definition, they will share
this file.

Mechanism #2. Mask Descriptions and Doc-
ument Descriptions are product specific. That
is, to each product belongs a set ofMask Descrip-
tions and a set of Document Descriptions,
and each description is in one file. Some descrip-
tions can be used for more than one product. This is
handled by the configuration management system,
where two products can share the same configura-
tion item.

The description languages need extension for
some products (e.g. Austrian registry offices need
extra formatting which is not used in Germany).
Mask Controller and Document Format-

ter will need adaptation only if a certain function
needs different implementations for a product.

Mechanism #3. Category Descriptions are
product specific, that is, to each of our products

Figure 9. Realizing variability of the domain

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

117

Research Section C. Fritsch and B. Renz

belongs a set of files containing the Category
Descriptions.

Mechanism #4. The State Table is product
specific. We decided to describe the State Table
as an array in a header file because our state tables
change rarely. If they changed regularly, we would
prefer to put their description in the specification
level.

5.2.2. Realizing Variability of Technology
Figure 10 shows where variability of technology
happens.

Mechanism #1. Different database technologies
require different implementations of the Data
Access Module and thecdic tool (e.g. data access
on a navigating database differs from data access
on an SQL database.) The Trans Data Object,
however, which resolves the data references, is used
without adaptation in all products.

Mechanism #2. TheMask Controllerdepends
on a GUI infrastructure to a high degree, and so
does magic. magic generates the Mask Objects
Archives appropriately. The mask description
language depends to a certain degree on the possi-
bilities the GUI provides. We kept both magic and
the mask description language downward compat-
ible.

Printing depends on printing technology, but
the Document Descriptions and the Document
Formatter do not.

Figure 10. Realizing variability of technology

Mechanism #3. This mechanism is independent
of technology.

Mechanism #4. The User Command Con-
troller depends on the GUI. Events resulting
from user interactions have to be redirected to the
User Command Controller.

5.3. Traceability

In our product line, requirements come from
law and from customers. Requirements concerning
technology, such as ‘we want to use database X’ or
‘we want to use network Y’, are easy to handle.

Requirements concerning the domain are spread
across thousands of details and are sometimes
difficult to understand. If these requirements are
realized in one of our products, they will be specified
in Mask Descriptions, Document Descrip-
tions, and Category Descriptions. Com-
ments on their origin can be added. The descriptions
serve as specification, code, and documentation.
They control what the software does and they
answer all questions about why, when, and how
the software does something. Experienced domain
experts can read them, write them, understand
them, and use them as the single source of truth.
Traceability is therefore trivial.

5.4. Derivation and Configuration of Products

We describe the derivation of products in four
examples:

• Variants due to German state law. All vari-
ants for German registry offices use the
same Data Definition. Mask Descrip-
tions, Document Descriptions, and Cat-
egory Descriptions differ. Differences are
realized either by various descriptions or by
conditional expressions in a description. During
installation, the software is customized.

• Variant due to Austrian law. The Data Defi-
nition is different from Germany, and so are
Mask Descriptions, Document Descrip-
tions, Category Descriptions, and the
State Table. All differences are located in the
specification level, as shown in Figure 9. Disjoint
sets of descriptions are deployed for Austria and
Germany.

• Variants due to database technology. The
products in our product line run on different

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

118

Research Section Mechanisms for Adaptable Systems

database systems. The application programming
interfaces of the databases determine if the base
level components can be reused. SQL databases
support a call level interface more or less
according to the SQL standard. We implemented
one variant of the Data Access Module for
all of them. Customization during installation
handles the subtle nuances. Non-SQL databases
(that we used for cost reasons) required a variant
of the Data Access Module. The appropriate
Data Access Module for a product is chosen
at link time. In general, the reusability of base
level components depends on the adaptability
of the underlying technologies.

• Variants due to operating system and user
interface. Since the first generation of our
product line, the evolution of operating sys-
tems and user interfaces has taken two major
steps: from an alphanumerical, semigraphical UI
under DOS/Unix to the graphical user interface
of Windows, and then to web-based interaction
forms. Both steps required the reimplementation
of components of the base level (see Figure 10).
Our software products are adapted to different
technologies by exchanging base level compo-
nents, which leaves the domain functionality
untouched. Variants of base level components
are chosen at link time.

5.5. Impact on Quality Attributes

We discuss the impact of a meta-level architecture
and of domain-specific languages on the quality of
a software product or a software product line. We
follow the classification of quality attributes in Bass
et al. (2003). In each case, we give an example from
our product line.

5.5.1. Modifiability
Modifiability can be achieved by localizing expected
changes and preventing the ripple effect. In a
meta-level architecture, the separation of concerns
between the meta-level and the base level allows the
modification of artifacts independently at different
levels, in particular,

• to make modifications at the specification level.
• to change the base level, while leaving the

specification level untouched, and vice versa.
Making changes at the base level takes more
effort, but is supposed to happen less frequently.

To ease these kinds of changes was one of our
major architectural goals. The four mechanisms
are designed to support the modifiability of our
products.

On the other hand, the price we pay for the
separation of concerns between the meta-level and
the base level is an architectural commitment.

Modifiability can also be improved by simplifying
the deployment process, in particular, by deferring
the binding time. A meta-level architecture provides
full flexibility for binding times.

Our mechanisms #2 and #3 decouple changes of
domain-specific descriptions from the construction
of the base-level components. Meta-level objects are
replaceable at runtime.

Domain-specific languages defined by a gram-
mar, as the languages in our mechanism #2, expose
a high degree of modifiability. The syntax can be
extended, and additional features can be introduced
in a downward compatible manner. The language
can be used in different environments.

On the other side, the conceptual scope of a
domain-specific language is hard to modify. All
the more, the language must capture the essence of
the domain requirements. We discuss this point in
Section 6.

5.5.2. Performance
A meta-level architecture introduces an indirection,
which slows down performance. Symbolic infor-
mation is evaluated at runtime via a reflection
mechanism. Smart implementations can, however,
diminish these effects. For example, the imple-
mentation of the Document Formatter has very
little overhead because the Document Three-
Address Code generated by the compiler is opti-
mized for performance.

It is not possible to make a general statement
about the impact of domain-specific descriptions
on the performance of a system. Generated code
should be faster than interpreting the descriptions,
as we do in mechanism #2.

In our architecture, the resolution of the symbolic
names by the Trans Data Object is the critical
point with respect to response time. In fact, there is
a trade-off between performance and modifiability.
We decided for adaptability. In an interactive
system like ours, the environment (e.g. networks or
databases) often has more impact on performance
than the architecture, regardless of the decision one
makes with respect to meta-level mechanisms.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

119

Research Section C. Fritsch and B. Renz

5.5.3. Testability
The testability of a software system is influenced by
both a meta-level architecture and domain-specific
languages.

A meta-level architecture allows us to decouple
the testing of the base level from the testing of
the meta-level. The built-in separation of concerns
sets a clear dividing line for testing. The following
questions can be answered independently:

• Do the compilers generate correct meta-level
objects according to their specification?

• Do the base-level components work correctly
under the control of the meta-level objects?

• Are the domain descriptions correct?

The architecture also facilitates the locating of
defects. Given a certain failure, it is easy to say
in which component the defect is. Just as the
levels decouple technology from domain logic, they
decouple responsibilities of software developers
from those of domain experts.

Domain descriptions written in domain-specific
languages defined by a grammar give rise to
straightforward test strategies. The primitive ele-
ments of the language can be checked indepen-
dently and the ways to combine these primitive
elements are well defined. If the implementation of
the language prevents side effects, testing is fur-
ther facilitated. For example, in our languages it is
impossible to generate recursive invocation.

5.5.4. Availability
A meta-level architecture or domain-specific lan-
guages do not directly affect the availability of
the system. There is, however, an indirect effect
because such a meta-level architecture allows us to
design and implement more testable and less faulty
software.

In our development process, we classified faults
in the base level in

1. defects resulting from coding errors
2. effects resulting from unexpected user interac-

tion
3. failures arising from external effects, such as

hardware errors, or shortage of resources.

Meta-level architectures and domain-specific lan-
guages can prevent faults of type 1 and guard
against type 2 and 3:

• Meta-level software product line architectures
lead to frequent use of the base level compo-
nents. Hence, these components achieve a high
level of stability. In fact, our base level was
defect-free.

• By explicitly separating base level and meta-
level, we achieved excellent testability and easier
detection of defects.

5.5.5. Security
A meta-level architecture opens additional security
holes, in particular, if interpreters are used in the
base level.

SQL injection is a well-known example of the
false attribution of meta-level objects to infiltrate
a system (Whittaker and Thompson 2004, Page
48). As a consequence, the implementation of a
meta-level architecture requires special attention to
security. For example, digital signatures can assure
the authenticity of meta-level objects.

Owing to the organizational environment in
which our products are used, we did not need
to take any special precautions.

5.5.6. Usability
A meta-level architecture leads to a uniform behavior
of the system. Both developers and users under-
stand it easily. The software offers the user a clear
and consistent mental model. It is in the nature
of this architecture that features of the same type
behave in the same way. They appear in the meta-
level many times, but their processing is imple-
mented only once.

On the other hand, sometimes users want variants
that may be hard to realize. Special cases, excep-
tions, or ad hoc variants are impossible or possible
only with more effort. Careful positioning of the
distinction line between base and meta-level will
allow the implementation of the variants needed by
the specifications.

Therefore, the design of the domain-specific
languages is crucial for usability and adaptability.
Only if the languages used in the specification level
of a meta-level architecture capture the essence
of the domain will the software give the user
satisfaction, because only then will the user perceive
the system as a solution for his tasks. Accordingly,
the main question we must answer if we want to
achieve a high level of usability is how to find the
suitable language that meets the specific properties
of the domain. This is discussed in the next section.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

120

Research Section Mechanisms for Adaptable Systems

6. ON THE DESIGN OF DOMAIN-SPECIFIC
LANGUAGES

6.1. Finding Patterns in the Domain

The key for designing domain-specific languages
is to find patterns in the domain that allow us
to describe an intended behavior of a software
product. It is difficult, maybe impossible, to give
general advice on how to find these patterns,
because domain-specific patterns are specific and
not general.

There is no silver bullet to find patterns in the
domain. One needs a thorough understanding.
This is even true for ostensibly simple facts. For
example, the German registrar has a view of per-
sons’ names that differs fundamentally from other
public authorities. The registrar needs to disassem-
ble names according to the role they play in civil
law. He knows and distinguishes first name, fam-
ily name, additional name, birth name, assumed
name, title, and name affix. The residents’ reg-
istration office, by comparison, just distinguishes
first name, last name, and name affix. With respect
to an address, the level of detail demanded by
registrar and residents’ registration office is the
opposite way round: The residents’ registration
office distinguishes street name, house number,
number of rear building, and floor. The regis-
trar shows no interest in this detailed informa-
tion. He just needs street name and house num-
ber.

As this little example shows, the analysis of the
domain is the basis for finding patterns, for finding
the vocabulary of the domain. Understanding the
vocabulary of the domain is the precondition to find
means to describe the domain thus, for a domain-
specific language.

6.2. Characteristic Properties in the Domain

It is impossible to describe generic, domain-
independent patterns, but it is possible to describe
properties of the patterns one might look for.
The designer of domain-specific languages has to
observe the domain, i.e. the problem space, and has
to discover the properties that the descriptions must
capture.

We categorize the properties we incorporated in
the domain-specific languages as follows:

• Given properties

• Anticipated properties
• Requested properties
• Designed properties
• Deduced properties
• Introduced properties.

In the following sections we discuss the properties
of patterns that we found in our domain and used to
design the domain-specific languages. We also give
examples taken from the world of the registrars,
their concepts, and their work practices.

6.2.1. Given Properties
The property is given by the domain, one has to
understand it and support it in a convenient way.

A given property can be discovered by analyz-
ing the domain. Sometimes comparison with other
domains helps, because differences may be candi-
dates for given properties.

Example: Registrars write text in fields on forms.
This is true for many domains. But registrars
must prevent subsequent insertion of text. So, only
monospaced fonts are used, text starts immediately
after any preprinted words, text ends with a final
character, remaining white space is crossed out with
a fill character, and printing on reserved positions
is declared explicitly.

This is a given property, and the software
must do the same. (Interestingly enough, Germany
and Austria use different final characters.) These
properties given by the domain strongly influenced
the design of both the document description
language and the document formatter.

6.2.2. Anticipated Properties
The anticipated property is not given, but will
probably appear in the future. One had better
provide support for this property.

Such a property can be found by thoroughly
observing an aspect of the domain and comparing
it with similar aspects in other domains. If more
modern aspects appear in other domains, they
might become relevant in this domain.

Example: Registrars fill out forms. Printing onto
different preprinted forms is cumbersome. We
expected that (at least a part of) the forms would
be replaced with electronic forms sooner or later.
We therefore included the possibility to print both
form and text in one go. Years later, the legislation
allowed electronic forms for certificates.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

121

Research Section C. Fritsch and B. Renz

6.2.3. Requested Properties
The property is not given per se, but domain experts
and users request to act in a certain manner. Even
though several solutions are possible, they insist on
one.

A requested property can be found by listening to
domain experts and users. What they say may not
make sense immediately. But, if some behavior or
feature is recognized as important to them, it must
be realized.

Example: The registrar checks the legal correct-
ness of a transaction. What is legally correct and
unambiguous can be expressed logically. The soft-
ware provides the logical rules to check the transac-
tions. Nevertheless, our domain experts requested
the possibility to switch off all logical checks. It must
remain the registrar’s authority to decide what is
correct and what is not, because he is responsible
for doing the right thing.

A well-designed language provides features that
allow such requests. Sometimes, different users or
groups of users express contradictory requests. This
may cause a variant in the product line.

6.2.4. Designed Properties
The property cannot be derived from the domain,
it is not given, anticipated, or requested. Rather,
the property is designed during the design of the
software.

Transforming tasks from the problem space to
a solution in the software system will confront
us with choices solely because the solution is a
software system. It offers different ways to do
things. One has to invent an appropriate way.
In this situation, a property should be designed.
A designed property should be used consistently
throughout the development of the solution. The
domain-specific language should provide support
for these properties.

Example: The series of masks often has optional
masks, depending on the particular data (e.g. if
the fiancés have children, masks for the children’s
names and addresses will be needed). There are
basically two strategies to organize the workflow:
1. By default, show the set of mandatory masks
for a transaction. Provide buttons to access optional
masks. 2. Automatically adjust the set of masks to
the current transaction data. Provide direct access to
the mandatory masks. Both strategies are possible.
The choice made impacts the design of the domain-
specific language.

6.2.5. Deduced Properties
Software reduces the complexity of the real world
by introducing structure and schema. Its metaphors
create a virtual reality. It is possible to deduce
properties from these metaphors that are consistent
with the image the software induces in the users’
minds.

Virtually, the domain is schematized according
to a congruous idea. If the users catch on to the
underlying metaphor, they will do the right thing
automatically. Domain-specific languages should
be designed with this in mind.

Example: From the organization of some registry
offices, we adopted the notions of departments,
categories, and civil transactions. We perceived the
structure of the registrars’ work and deduced it as
a property: A department is a group of categories
belonging together, and a civil transaction is an
instance of a category (e.g. categories of the birth
department are registration of a birth, legitimation
of a child, and adoption.) We structured the
transaction data in the database and in the user
interface according to this deduced property. Easy
to understand, easy to use. It had the effect of
standardization.

6.2.6. Introduced Properties
Software is like a new world. An introduced property
appears only because of the software. In the real
world, there is no such thing.

A property will be introduced 1. if it is impossible
to realize the software without it or 2. to allow to do
things electronically that cannot be done in the real
world or 3. to facilitate the users’ work.

Example: We observed that registrars write
certain data over and over again, e.g. the name of
their own office and today’s date, or nationalities,
countries, languages. Also names of towns, streets,
offices, and hospitals. When writing by hand or on
a typewriter, there is no other way, but writing
or typing them over and over again. Not so on a
computer.

Our software reduced the registrars’ workload
by providing comfortable and convenient code-
controlled text insertions. The mask description
language contained statements to add different
types of code-controlled text insertion to a field,
and eventually this property was used in many
more cases than we had planned.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

122

Research Section Mechanisms for Adaptable Systems

7. CONCLUSION

Developing this architecture and these mechanisms
required not only a deep and thorough understand-
ing of the domain but also the discovery of patterns
in the domain. The mechanisms used in this architec-
ture fit these patterns. In particular, our data model
matches the structure of the civil transactions. We
took it as a basis to schematize the domain. ‘Prob-
lem analysis takes you from the level of identifying
the problem to the level of making the descriptions
needed to solve it’ according to Michael Jackson
(2001).

We join domain expertise with software engineer-
ing. Domain experts directly contribute to software
development: In the data references, they have
found a powerful, efficient means of expression. As
the owners of Mask Descriptions, Document
Descriptions, and Category Descriptions,
they have gained control over the domain-specific
aspects of application development.

The analysis of the domain has led to languages
that allow the description and specification of prod-
uct behavior. Variant descriptions specify variants
in the product line.

ACKNOWLEDGEMENT

We would like to thank Klaudia Metzner, the owner
and executive director of the publishing house,
for her sponsorship, favor, and passion, and for
bringing in her outstanding domain knowledge.
We thank the software development team at the
publishing house, namely Thomas Stahl who co-
designed and implemented the domain-specific
languages, Manfred Benna and Rolf Deubel who
implemented the first generation of the product line,
Jens Puhle who is the most meticulous programmer
we have ever met, Heike Schröder who developed
the user interface components, Olaf Horn who
knows everything about the base level technologies,
Jörg Thiemer who bridges technical and domain
knowledge, and Paul Rosenberg who is the perfect
users’ advocate.

Although both of us have been with other
organizations for four years now, we continue to
observe the development of the registrars’ software
with interest. We wish the team all the best.

REFERENCES

Aho AV, Sethi R, Ullman JD. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley: Reading, MA.

Bass L, Clements P, Kazman R. 2003. Software Architecture
in Practice, 2nd edn. Addison-Wesley: Boston, MA.

Buschmann F, Meunier R, Rohnert H, Sommerlad P,
Stal M. 1996. Pattern-oriented Software Architecture: A
System of Patterns, Vol. 1. John Wiley & Sons: New York.

Fowler M. 2003. Patterns of Enterprise Application
Architecture. Addison-Wesley: Boston, MA.

Gamma E, Helm R, Johnson R, Vlissides J. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley: Boston, MA.

Harel D. 1987. Statecharts: a visual formalism for complex
systems. Science of Computer Programming 8: 231–274.

Holub AI. 1990. Compiler Design in C. Prentice-Hall:
Englewood Cliffs, NJ.

Horrocks I. 1999. Constructing the User Interface with
Statecharts. Addison-Wesley: Harlow, England.

Jackson M. 2001. Problem Frames: Analysing and Structuring
Software Development Problems. Addison-Wesley: Harlow,
England.

Keller F, Tabeling P, Apfelbacher R, Gröne B, Knöpfel A,
Kugel R, Schmidt O. 2002. Improving knowledge transfer
at the architectural level: concepts and notations.
Proceedings of the 2002 International Conference on Software
Engineering Research and Practice, Las Vegas 2002.

Knöpfel A. 2003. FMC Quick Introduction. Hasso Plattner
Institute for Software Systems Engineering: Potsdam,
Germany. http://fmc.hpi.uni-potsdam.de.

Rumbaugh J, Blaha M, Premerlani W, Eddy F, Loren-
sen W. 1991. Object-Oriented Modeling and Design.
Prentice-Hall: Englewood Cliffs, NJ.

Samek M. 2002. Practical Statecharts in C/C++. CMP
Books, San Francisco, USA.

Schmitz H, Bornhofen H. (ed.). 2001. Dienstanweisung für
die Standesbeamten und ihre Aufsichtsbehörden, 2nd edn.
Verlag für Standesamtswesen: Frankfurt am Main.

Schmitz H, Bornhofen H. (ed.). 2003. Personenstandsgesetz,
10th edn. Verlag für Standesamtswesen: Frankfurt am
Main.

Silberschatz A, Korth H, Sudarshan S. 2002. Database
System Concepts, 4th edn. Mc-Graw-Hill: Boston, MA.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

123

Research Section C. Fritsch and B. Renz

Thai TL, Lam H. 2001. .NET Framework Essentials:
Introducing the. NET Framework. O’Reilly & Associates:
Sebastopol, CA.

Whittaker JA, Thompson HH. 2004. How to Break Software
Security: Effective Techniques for Security Testing. Addison-
Wesley: Boston, MA.

Yoder JW, Johnson R. 2002. The adaptive object model
architectural style. In The Proceeding of The Working

IEEE/IFIP Conference on Software Architecture 2002
(WICSA3 ‘02) at the World Computer Congress in
Montreal 2002, Bosch J, Gentleman M, Hofmeister C,
Kuusela J. (eds). Kluwer Academic Publishers.
http://www.joeyoder.com/papers/.

Copyright 2005 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2005; 10: 103–124

124

