
3 times Sudoku
Logic and Constraints in Clojure

Burkhardt Renz

Institut für SoftwareArchitektur
Technische Hochschule Mittelhessen

:clojureD
January 24th, 2015



The Nature of the Game
Rules and Terminology

3
1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8

row

column block

The rule:
Each digit appears once in each unit



The Nature of the Game
Candidates for the free cells

3
1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8 2

5
1 2
4
7

1 2
4
7

1
4

2

22 33
8

2 3 2
6

2 3
8

2 3

2
4
7

2 3
4
7 8

2 3
8

2 3 3
4
8

2
6

1 2 3
5

3
7

2 3
5

1 3
4 5
8

1 2 3
4 5 6
7 8 9

1 2
4 6
7

2
4 6

2 31 2
6

1 2 3
5 6

1 3
5

1 2 3
5

3
5
8

5

5 4 5
2

1
5 6

1
6 5

7
1
55

9



The Nature of the Game
The Solution

3
1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8

9

9

1

1

1
1

2
2

2
2

2
2

2

3
3

3
3

3

3

4

4
4

4

5

5

5
5

5
5

6

6

6
6

7

7
7

7

8

8
8

8



The Nature of the Game
Solving Sudoku (more or less brute force)

Demo

Project https://github.com/esb-dev/sudoku

File sudoku.clj

https://github.com/esb-dev/sudoku


The Nature of the Game
What, not how

This program implements a certain strategy to solve the
puzzle
It says How to solve the puzzle
But we want to do better – we just want to express the
problem, i.e., the rules of Sudoku together with the given clues
What, not how – and let a generic engine, a solver figure out
how to solve the problem
3 times Sudoku = you will see 3 possibilities to express the
rules of Sudoku. Each time a solver processes this
specification and gives us the solution



Logic WorkBench (lwb)
About lwb

lwb comprises functions and tools for the propositional and
predicate logic
it’s a playground for a course in logic and formal methods
work in progress, we published just some functions for the
propositional logic
https://github.com/esb-dev/lwb

https://github.com/esb-dev/lwb


Logic WorkBench (lwb)
Representation of propositions in lwb

An atomic proposition (short: an atom) can have one of the
truth values true or false.
It is represented in lwb as a Clojure symbol, e.g. p, q. . .

A proposition is build from atoms and logical operators like
not, and, or, impl, ite. . .
It is represented in lwb as a Clojure list – also Clojure code
that way, e.g., (or (not p) (not q)).



Logic WorkBench (lwb)
Interesting questions in propositional logic

Given a proposition like (or (not p) (not q)) there are two
types of questions:

1 Given a valuation for the atoms, i.e. an assignment of truth
values for the atoms:
What is the truth value of the proposition?
Example: Given p true, q false, the truth value of the
proposition above is true.

2 Given a proposition:
Is it satisfiable?, i.e. is there a valuation (a “world”) such that
the proposition is true
The proposition (or (not p) (not q)) is satisfiable.



Logic WorkBench (lwb)
Encoding Sudoku as a proposition

3
1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8

c281? ... c285? ... c289?



Logic WorkBench (lwb)
Encoding Sudoku as a proposition

For each cell and each possible digit we introduce an atom
cxyd, where x is the row, y the column, and d the digit in the
cell.
For all x and y exactly one of the cxyd is true.
For all units and all d at most one cyxd is true
Finally the givens, e.g., c122 in our example is true



Logic WorkBench (lwb)
Cardinality constraints in propositional logic

Given atoms p, q, r, we want to express:
1 at least one of the atoms is true

(or p q r)

2 at most one of the atoms is true
(or (not p) (not q))

(or (not p) (not r))

(or (not q) (not r))

3 lwb has functions that generate such formulae:
(min-kof k syms)

(max-kof k syms)

(oneof syms)

e.g. (oneof ’[p q r]) gives a seq of the clauses above



Logic WorkBench (lwb)
Solving Sudoku with lwb

Demo

Project https://github.com/esb-dev/lwb

File lwb/prop/examples/sudoku.clj

https://github.com/esb-dev/lwb


Logic WorkBench (lwb)
How does it work?

proposition
in cnf

satisfying
valuation

proposition
in dimacs

SAT4J

3
1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8 3

1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8

9

9

1

1

1
1

2
2

2
2

2
2

2

3
3

3
3

3

3

4

4
4

4

5

5

5
5

5
5

6

6

6
6

7

7
7

7

8

8
8

8

www.sat4j.org



Kodkod in Clojure (kic)
About Kodkod and kic

Leopardus guigna, Chilean cat, known to be
fast
E�cient constraint solver for first order,
relational logic – a finite model finder

developed by Emina Torlak, former MIT,
now University of Washington, Seattle
see http://alloy.mit.edu/kodkod/

Kodkod in Clojure is an ultrathin wrapper for
Kodkod, see
https://github.com/esb-dev/kic

http://alloy.mit.edu/kodkod/
https://github.com/esb-dev/kic


Kodkod in Clojure (kic)
Ingredients of a Kodkod specification

A finite universe of “things”
e.g. [1 2 3 4 5 6 7 8 9]

A structure of potential worlds given by relation variables
e.g., a relation variable grid with 3 dimensions: x, y, d

A couple of constraints on the relational variables
e.g. @x , y D! d : rx , y , ds P grid

A given partial solution defined by lower and upper bounds for
the relation variables
e.g. r1, 2, 2s P grid . . .

A solution, aka instance or model, is a set of relations fulfilling
the constraints on the relational variables



Kodkod in Clojure (kic)
Encoding Sudoku in Kodkod

3
1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8

...
[2 7 1]
[2 8 1]
[2 8 2]
[2 8 3]
[2 8 4]
[2 8 5]
[2 8 6]
[2 8 7]
[2 8 8]
[2 8 9]
[2 9 4]
...

grid



Kodkod in Clojure (kic)
Encoding Sudoku in Kodkod

We have to express that
each cell has just one number in it
The value in each cell does not occur in another cell of its row
The value in each cell does not occur in another cell of its
column
All numbers from the universe occur in a block

Kodkod/kic has a lot of operators of the relational algebra to
express such constraints



Kodkod in Clojure (kic)
Solving Sudoku with kic

Demo

Project https://github.com/esb-dev/kic

File kic/examples/sudoku.clj

https://github.com/esb-dev/kic


Kodkod in Clojure (kic)
How does it work?

specification
in kodkod

model for
the spec

satisfying
valuation

proposition
in dimacs

SAT Solver

3
1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8 3

1 6 5 7

3 8
6 7 2 9 1 4
8 1 7 3 9 6

4 8 9 7

6 9 5 1
7 5 9 8 4 1
4

2 4

9
9 6 8

9

9

1

1

1
1

2
2

2
2

2
2

2

3
3

3
3

3

3

4

4
4

4

5

5

5
5

5
5

6

6

6
6

7

7
7

7

8

8
8

8

e.g. SAT4J



core.logic
About core.logic

core.logic is a logic programming library for Clojure and
ClojureScript
core.logic is a port of miniKanren, developed first in Scheme
by William E. Byrd, Daniel P. Friedman and others
core.logic expands Clojure from functional to relational
programming and constraint solving
core.logic supports CLP(FD) – Constraint Logic Programming
over finite domains



core.logic
Basic concepts of core.logic

A logic variable aka lvar is a placeholder for a value
Goals are functions that encapsulate a logic program
A goal succeeds if it can be made true by substituting
variables by values
Goals can be combined by conjunction (and) and disjunction
(or)
If a goal succeeds, we get as a result a sequence of
substitutions of the logic variables, i.e. all possible “worlds”
that satisfy the constraints of the logic program



core.logic
Basic concepts of core.logic – Example

(run* [q]

(fresh [x y]

(== x 1)

(conde [(== y 1)]

[(== y 2)]

[(== y 3) (== x 2)])

(== q [x y])))

; => ([1 1] [1 2])

logic variable q aka query
local fresh (unbound)
logic variables x and y
== means unify x with 1
multiple goals connected
by and

conde is or (conditional
every line)
run* runs the solver and
gives all possible solutions



core.logic
Unification – example

(run* [q]
(fresh [x y]

(== x 1)

(conde [(== y 1)]

[(== y 2)]
[(== y 3) (== x 2)])

(== q [x y])))

;=> ([1 1] [1 2])

x � 1

x � 2

q�[1 2]q�[1 1]

y � 1 y � 2 y � 3



core.logic
Solving Sudoku in core.logic

Demo

Project https://github.com/esb-dev/sudoku

File sudoku-cl.clj

https://github.com/esb-dev/sudoku


Play with logic in Clojure!

It’s fun – and useful, too



Appendix
Benchmarks

easy50 top95 hardest relative

python (P. Norvig) 4.0 14.6 5.3 1.0
brute force 53.4 5838.2 213.6 340.0

lwb 136.7 141.0 137.5 13.2
kic 14.2 13.7 10.9 1.3

core.logic 22.2 5317.31 258.13 308.9
(times in msecs)

1A strange result. There are some puzzles in top95.txt where core.logic
needs 25 secs, others are solved in about 1 sec. I don’t know the reason for
such a huge di�erence.



Appendix
Interesting Facts about Sudoku

1 The number of complete Sudoku grids is

9! ˆ 722 ˆ 27 ˆ 27, 704, 267, 971 « 6.7 ˆ 1021

(Bertram Felgenhauer and Frazer Jarvis, 2005)
2 The minimal number of givens necessary to build proper

puzzles is 17.
(Gary McGuire, Bastian Tugemann and Gilles Civario, 2012)

3 The general problem of solving a Sudoku for order n has been
shown to be NP-complete.
(Takayugi Yato, 2003)



Appendix
Usages of SAT solvers

static code analysis
variability model of (software) product lines
analysis of component-based systems
analysis of genetic networks in bioinformatics
. . .



Appendix
Usages of Kodkod

Alloy a lightweight formal method is build
upon Kodkod
Analysis of specifications, code, designs . . .
Alloy finds small sized models or
counterexamples for a given Alloy
specification
small scope hypothesis

awesome to develop Alloy specs interactively
in the Alloy Analyzer
Introduction to Alloy and the Alloy Analyzer
(in german) on my web site: https://

homepages.thm.de/~hg11260/lfm.html

https://homepages.thm.de/~hg11260/lfm.html
https://homepages.thm.de/~hg11260/lfm.html


Appendix
Usages of core.logic

kibit, a static code analyzer for Clojure
damp.ekeko, an Eclipse plugin for inspection and manipulation
of files in a workspace
Funny QT, a model querying and transformation library
natural-deduction, a proof system for the propositional and
first order logic, developed at the THM
https://github.com/Kuerschten/natural-deduction

https://github.com/Kuerschten/natural-deduction


core.logic – How to get started

David Nolen et al.
A Core.logic Primer
https://github.com/clojure/core.logic/wiki/

A-Core.logic-Primer

Russell Mull
microLogic
http://mullr.github.io/micrologic/literate.html

Bruce A. Tate et al.
Seven More Languages in Seven Weeks, Chap. 6
The Pragmatic BookShelf, 2014

https://github.com/clojure/core.logic/wiki/A-Core.logic-Primer
https://github.com/clojure/core.logic/wiki/A-Core.logic-Primer
http://mullr.github.io/micrologic/literate.html

	The Nature of the Game
	Rules and Terminology

	Logic WorkBench (lwb)
	About lwb
	Solving Sudoku with lwb

	Kodkod in Clojure (kic)
	About Kodkod and kic
	Solving Sudoku in Kodkod

	miniKanren in Clojure (core.logic)
	About core.logic
	Solving Sudoku in core.logic


